
Automatic generation of schedula-
bility analysis - consistent code

Emilio Salazar
esalazar@dit.upm.es

STRAST
group

2 / 20

Table of contents

•	Motivation
•	Schedulability	analysis
•	Ravenscar	profile
•	Ada	code	generator	overview
•	MARTE	to	Neutral	transformation
•	Neutral	to	Ada	generation
•	MARTE’s	issues	for	generating	code
•	Conclusions

3 / 20

•	Code	generation	and	 schedulability	 analysis	 can	be	automa-
tized.

•	Avoid	blackboxed	tools	and	promote	integration	between	tools

•	Integrate	code	generation	with	schedulability	analysis

•	Create	tools	with	MARTE’s	support

•	Take	advantage	of	Model	Driven	Architecture

Motivation

4 / 20

Schedulability analysis
•	All	RTS	must	meet	time	constraints

•	The	profiles	in	OMG’s	MARTE	standard	address	schedulability	
analysis	in	UML	models

•	Nowadays,	there	are	few	schedulability	analysis	tools	that	sup-
port	MARTE’s	models	directly	and	code	generation

•	Schedulability	analysis	tools	are	usually	viewed	as	blackboxes	
which	are	developed	 isolated	 from	the	automatic	code	gen-
erators

5 / 20

Schedulability analysis (II)

•	Writing	time-deterministic	code	is	very	dependant	of	the	pro-
gramming	language	and	the	execution	platform

•	Automating	the	generation	code	will	save	time	and	reduce	bugs	
and	costs

•	Modern	programming	 languages	 include	many	non	time-de-
terministic	features	(e.g.	memory	garbage	collector,	dynamic	
dispatching...)

6 / 20

Ada Ravenscar Profile
•	ISO/IEC	TR	24718:2005	is	a	subset	of	the	Ada	tasking	features	

	» Addressed	to	Real	Time	and	High	Integrity	systems
	» Time-deterministic	code
	» Easier	code	certification

•	Included	in	Ada	2005	as	a	configuration pragma

•	Usual	problems	in	concurrent	programs:
 » Priority inversion:	high	priority	task	blocked	awaiting	a	resource	used	
by	a	low	priority	task
 » Deadlock:	groups	of	tasks	blocking	each	other
 » Livelock:	circular	data	dependencies	between	tasks
 » Missed deadlines:	The	task	fails	to	complete	its	work	before	its	dead-
line

7 / 20

Ada Ravenscar Profile (II)
•	Tasks	restrictions:

	» Only	static	creation
	» Fixed	priority
	» Interactions	with	others	tasks	only	via	protected	objects
	» Defined	at	library	level
	» No	tasks	hierarchies
 » select	and	abort statements	(rendezvous)	are	forbidden

•	Protected	objects	restrictions:
	» At	most,	one	entry	per	protected	object
	» At	most,	one	task	queued	at	any	time	on	that	entry
	» Simple	entry	barriers	are	forced

8 / 20

Ada Ravenscar Profile (III)

•	Ceiling	protocol	and	FIFO	within	priorities	dispatching	policy	to	
assure	the	absence	of	deadlocks

•	No	dynamic	memory	from	the	standard	storage	pool
	» Dynamic	memory	from	user	defined	storage	pools	is	allowed

•	Only	monotonic	regular	clock	(Ada.Real_Time)

•	Only	absolute	delays	(delay until)

9 / 20

Ada code generator overview
•	Advantages	of	 the	 integration	between	analysis	and	genera-
tion	tools:

	» Avoids	inconsistencies	between	model	and	code
	» Code	behaviors	assumed	by	the	schedulability	analysis	 is	known	by	
the	code	generator	and	vice	versa
	» Platform	specific	code	can	be	used	by	the	code	generator	to	assure	
consistency	(e.g.	WCET	alarms)

•	Code	generation	is	split	into	two	parts	to	achieve	consistency:	
 » Model to model	 transformation:	 schedulability	 analysis	model	 gen-
eration.	Most	of	analysis	decisions	are	taken	here.
 » Model to text	transformation:	Ada	2005	code	generation

10 / 20

Ravenscar Ada 2005 code

Ravenscar Ada MTL
Model to Text

transformation

MARTE UML Model

MARTE to MAST
QVT Model

transformation

Neutral ModelMAST Model
MAST to Neutral

QVT Model
 transformation

MARTE to Neutral
QVT Model

transformation

Ada code generator overview (II)

11 / 20

MARTE to Neutral transformation
•	QVT	Operational	model	to	model	transformation

	» Input	model:	UML	model	annotated	with	MARTE
	» Output	model:	Plain	UML	model

•	MARTE	input	model	must	meet	several	constraints:
	» (1	,	∞)		<<saAnalisysContext>>	packages
	» (1	,	∞)	<<GaResourcesPlatform>>	classifiers
	» (0	,	∞)	<<SchedulableResource>>	components	or	interfaces
	» (0	,	∞)	<<saSharedResource>>	components	or	interfaces

•	Extracts	only	code	generation	relevant	information
	» Period,	jitter,	priority,	phase...
	» Converts	MARTE	types	to	UML	standard	types
	» Navigates	among	MARTE	stereotypes

12 / 20

•	Generates	pattern	based	plain	UML	output	model
	» Only	standard	UML	2.1	types	and	data	types
	» Most	common	real-time	patterns	(periodic,	sporadic,	shared...)
	» Generic	UML	classes	with	direct	translation	to	Ada	generic	packages

•	Avoids	stereotypes	and	non-standard	UML	types	because	they	
are	not	fully	supported	in	MTL

MARTE to Neutral transformation (II)

Active

Priority : Property
Offset : Property
StackSize : Property
Activity : Operation
WCETOvr : Operation
WCETBudget : Property

Sporadic

Separation : Property
Sporadic_Activity : Operation
Release : Class

Synchronous_Task_Control

Name : Property

Ravenscar_Exception_Aware_Execution

Constraint_Error_Handler : Operation
Program_Error_Handler : Operation
Storage_Error_Handler : Operation
Tasking_Error_Handler : Operation
Other_Error_Handler : Operation

Exception_Occurrence

Protected

Ceiling : Property

Active

Priority : Property
Offset : Property
StackSize : Property
Activity : Operation
WCETOvr : Operation
WCETBudget : Property

Sporadic

Separation : Property
Sporadic_Activity : Operation
Release : Class

Synchronous_Task_Control

Name : Property

Ravenscar_Exception_Aware_Execution

Constraint_Error_Handler : Operation
Program_Error_Handler : Operation
Storage_Error_Handler : Operation
Tasking_Error_Handler : Operation
Other_Error_Handler : Operation

Exception_Occurrence

Protected

Ceiling : Property

Active

Priority : Property
Offset : Property
StackSize : Property
Activity : Operation
WCETOvr : Operation
WCETBudget : Property

Sporadic

Separation : Property
Sporadic_Activity : Operation
Release : Class

Synchronous_Task_Control

Name : Property

Ravenscar_Exception_Aware_Execution

Constraint_Error_Handler : Operation
Program_Error_Handler : Operation
Storage_Error_Handler : Operation
Tasking_Error_Handler : Operation
Other_Error_Handler : Operation

Exception_Occurrence

Protected

Ceiling : Property

13 / 20

MARTE to Neutral transformation (III)

PeriodicComponent

Active

Priority : Property
Offset : Property
StackSize : Property
Activity : Operation
WCETOvr : Operation
WCETBudget : Property

Periodic

Period : Property
Periodic_Activity : Operation
DeadlineOvr : Operation

«bind»
Priority -> priorityValue, Activity -> PeriodicActivityValue

«bind»
Period -> periodValue

QVT transformation:
MARTE to Neutral

UML Classifier MARTE Stereotype Neutral Model
Component SchedulableResource Active
Component saSharedResource Protected
Interface SchedulableResource TaskInterface
Interface saSharedResource ProtectedInterface

14 / 20

MARTE to Neutral transformation (IV)
MARTE Model Neutral Model

15 / 20

Neutral to Ada generation
•	MOF2Text	Language	(MTL)	transformation

	» Input:	UML	model
	» Output:	Ravenscar	Ada	2005	code

•	Code	generation	is	based	on	a	library	of	Ada	generic	packages

•	Each	UML	class	in	the	library	has	one	Ada	generic	package	as-
sociated

•	The	MTL	generator	must	only	instantiate	the	correct	Ada	pack-
age	with	the	given	parameters

16 / 20

Neutral to Ada generation (II)

package PeriodicComponent_package is
 new wcet_periodic_tasks (
 Priority => 1,
 Period => 1000,
 Offset => 500,
 Periodic_Activity => periodiccomponent_activity,
 Deadline_Ovr_Handler => periodicComponent_DeadlineOvr.Hndl'Access,
 WCET_Budget => 10,
 WCET_Ovr_Handler => PeriodicComponent_WCETOvr.Hndl'Access);

PeriodicComponent

Active

Priority : Property
Offset : Property
StackSize : Property
Activity : Operation
WCETOvr : Operation
WCETBudget : Property

Periodic

Period : Property
Periodic_Activity : Operation
DeadlineOvr : Operation

«bind»
Priority -> priorityValue, Activity -> PeriodicActivityValue

«bind»
Period -> periodValue

MTL generation:
Neutral to Ada

Note:	Red	text	is	data	extracted	from	the	model	and	fitted	by	MTL	generator

17 / 20

MARTE’s issues for generating code
•	UML	and	MARTE are	huge,	 there	 are	many	ways	 to	 say	 the	
same	thing

	» A	subset	with	only	one	way	to	represent	the	same	thing:
	- Simpler	automatic	code	generation
	- Simpler	traceability	(in	both	ways)	management

•	UML	 (and	MARTE)	 are	 very	 targeted	 to	 the	 object-oriented	
paradigm

	» Complicated	to	make	UML	or	MARTE	designs	without	OO	elements
	» Non-OO	code	is	usually	easier	to	analyze

•	MARTE defines	its	own	types	and	data	types,	even	those	that	
are	already	defined	in	UML	(i.e.	integer,	string,	boolean)

18 / 20

MARTE’s issues for generating code (II)

•	Support	for	exceptions	handling

•	Support	for	handling	deadline	and	WCET	overruns

19 / 20

Conclusions
•	Schedulability	analysis	and	code	generation	integration	makes	
consistency	between	models	and	code	easier

•	Schedulability	analysis	and	code	generation	automation	
	» Reduces	RTS	costs
	» Increases	RTS	reliability
	» Reduces	RTS	development	time

•	MARTE’s	support	for	code	generation	could	be	improved

•	Ada	Ravenscar	subset	allows	to	assume	code	behavior,	which	
make	easier	the	code	generation

Thank you for your attention!
STRAST

group

