
Santander, 25/09/20101

Modular real-time models for complex 
systems

Santander, February 2011

Patricia López Martínez and José M. Drake

Grupo de Computadores y Tiempo Real
Universidad de Cantabria, Spain

ArtistDesign Workshop on Real-Time System
Models for Schedulability Analysis



Santander, 07-08/02/2010 Patricia López Martínez 2

Classical real-time design vs new design paradigms

 Classical real-time design:
 The designer knows all the details about the platform and the applications
 This is the scenario considered in many modelling and analysis environments (MAST, MARTE, …)

Application
Designer Real-time model

Executable
code

Concurrency
and logic
design RT Analysis/Design

Tools
Application Specification

(functionality + timing
requirements)

 New paradigms of real-time design for complex systems:
 Component-based, legacy code, heterogeneous systems, etc…
 The designers do not know the internal details of all the elements that form the system

Application
Designer

Application
Specification

(functionality +
timing

requirements)

Real-time
model

RT Analysis/Design
Tools

Model Composition

Module Designer



Santander, 07-08/02/2010 Patricia López Martínez 3

Modular and composable real-time models

 Our approach for modelling complex systems consists in:
 Associating to each reusable software/hardware module a real-time model containing 

all the information about its temporal behaviour required to evaluate the timing 
behaviour of any application in which the module may be used

 Generating the real-time model of a system as a composition of the models of all the 
elements that form it

 For the success of the composition process, the real-time model of a reusable 
software/hardware module must be:
 Complete: Information required to generate the real-time model of any application in 

which the module can be used
 Reusable: Independent of the application in which it is used
 Composable: With the models of other modules that interact with it

 The temporal behaviour of a software module depends on:
 The characteristics of the execution platform
 The behaviour of other software modules
 Availability of the platform resources: Workload



Santander, 07-08/02/2010 Patricia López Martínez 4

Mod-MAST: Modular MAST

 Mod-MAST is an extension of MAST that provides modularity and composability:

 It uses the set of modelling primitives defined in MAST but they can be parameterized

 It defines container modelling elements to formulate the real-time model of reusable:
• Platform elements: Processing Node, Communication Network and Communication Service.
• Application elements: Software Module.

 It is based on the concept of Model Descriptor vs Model Instance
• Model Descriptor:

– Parameterized template that describes the temporal behaviour of a module 
independently of the application

– Instantiation dependent characteristics formulated as parameters or references to other 
models

• Model Instance:
– Complete analyzable model of an instance of a module in a concrete real-time situation
– Obtained by assigning concrete values to the parameters and the unresolved references 

of the corresponding descriptor



Santander, 07-08/02/2010 Patricia López Martínez 5

Descriptor vs Instance

PC 1.1 GHz
MaRTE OS

<<RT_Model_Descriptor>>
MaRTEOS_1.1G_Model

Parameters:
speedFactor: Float = 1.0

Reusable Elements

myProc: 
(MaRTEOS + PC 2.2 GHz)

mySoundGenerator:
SoundGenerator

myLogger:
Logger

<<uses>>

My System

Repository

<<RT_Model_Descriptor>>
SoundGenerator_Model

<<RT_Model_Descriptor>>
Logger_Model

<<RT_Model_Descriptor>>
MaRTEOS_1.1G_Model

<<Processing_Node>>

iPlayer
<<SoftwareModule>>

SoundGenerator

iLogger

iLogger
<<SoftwareModule>>

Logger

<<RT_Model_Descriptor>>
SoundGenerator_Model

Parameters:
soundPriority: Priority
theLogger: Software_Module

<<RT_Model_Descriptor>>
Logger_Model

theLogger

<<RT_Model_Instance>>
myProc:MaRTEOS_1.1G_Model

speedFactor = 2.0

<<RT_Model_Instance>>
mySounGenerator:SoundGenerator_Model

soundPriority = 30

<<RT_Model_Instance>>
myLogger:Logger_Model

theLogger

HOST
HOST

My System RT Model



Santander, 07-08/02/2010 Patricia López Martínez 6

Example of Processing_Node descriptor

Proc: Regular_Processor

speedFactor = speed_Factor
Min_Interrupt_Priority =32
Max_Interrupt_Priority = 32

Sched: Primary_Scheduler

Host = Proc
Min_Priority =1
Max_Priority = 31

System_Timer: Alarm_Clock

MaRTEOS_1.1G_Model:Processing_Node

<<Param>> speed_Factor: Float = 1.0

RTEP_Driver_Desc: RTEP_Driver

<<Param>> numStations:Positive



Santander, 07-08/02/2010 Patricia López Martínez 7

Example of Software_Module descriptor

PC 1.1 GHz
MaRTE OS

<<RT_Model_Descriptor>>
MaRTEOS_1.1G_Model

Parameters:
speedFactor: Float = 1.0

Reusable Elements

myProc: 
(MaRTEOS + PC 2.2 GHz)

mySoundGenerator:
SoundGenerator

myLogger:
Logger

<<uses>>

My System

Repository

<<RT_Model_Descriptor>>
SoundGenerator_Model

<<RT_Model_Descriptor>>
Logger_Model

<<RT_Model_Descriptor>>
MaRTEOS_1.1G_Model

<<Processing_Node>>

iPlayer
<<SoftwareModule>>

SoundGenerator

iLogger

iLogger
<<SoftwareModule>>

Logger

<<RT_Model_Descriptor>>
SoundGenerator_Model

Parameters:
soundPriority: Priority
theLogger: Software_Module

<<RT_Model_Descriptor>>
Logger_Model

theLogger

<<RT_Model_Instance>>
myProc:MaRTEOS_1.1G_Model

speedFactor = 2.0

<<RT_Model_Instance>>
mySounGenerator:SoundGenerator_Model

soundPriority = 30

<<RT_Model_Instance>>
myLogger:Logger_Model

theLogger

HOST
HOST

My System RT Model

fail:Simple_Operation

deadline=soundPeriod

<<Periodic_Event>>
soundTrigger

soundTh

period = soundPeriod

play:Job

SoundGenerator_Model:Software_Module

<<Param>> HOST: Processing_Node
<<Param>> theLogger: Software_Module
<<Param>> soundMutexCeiling:Priority
<<Param>> soundPriority:Priority
<<Param>> soundPeriod: Time_Interval

soundTransaction: End_To_End_Flow

soundTh:Scheduling_Server

scheduler = HOST.scheduler
priority = soundPriority

<<Step>>
getNextNote_Step

usage = getNextNote

<<Step>>
UpdateSound_Step

usage = updateSound

OpenFile
<Step>>

wcet=4.7E-5
bcet=4.1E-5
acet=4.2E-5

wcet=4.7E-5
bcet=4.1E-5
acet=4.2E-5

LogError
<<Step>>

ref = theLogger.log

AddMelody
<<Step>>

soundMtx:Inmediate_Ceiling_Mutex

ceiling= soundMutexCeiling



Santander, 07-08/02/2010 Patricia López Martínez 8

From Mod-MAST to MAST

RTSituation

EndToEndFlow

MAST

Schedulable Resource

Mutual_Exclusion Resource

Operation

Processing_Resource

Scheduler

Timing_Object
Reactive Model

Platform Model Logical Model

Logical Model Platform ModelReactive Model

1

Software Module Model Instance

11

RTSituation

Platform Resource Model InstanceTransaction Model Instance

Mod-MAST

Model
Composition

Tool

Module
Configuration

Tool



Santander, 07-08/02/2010 Patricia López Martínez 9

CBSE-MAST: MAST for component-based systems

 CBSE-MAST: Adaptation of Mod-MAST to component-based systems
 New container elements:

 Software Component: Provided and required ports
 Software Connector

 The real-time model descriptor as part of the information provided by the component
 Opacity: The real-time model is managed and configured through metadata provided 

with the component package => RT-D&C

Real-time Component

Implementations

Code files

Metadata

Platform requirements

Functional

Instantiation data

Implementation

Real-time models

Provided interfaces

Configuration

Required interfaces
Temporal
behaviour
metadata



Santander, 07-08/02/2010 Patricia López Martínez 10

Open lines for future work

 Opaque management of the reusable models of the components 
 Standard formulation for the external view of the real-time model (as IDL for the functional view).
 The external view includes the information required to:

• Evaluate if two components are composable from the rt point of view 

• Adapt the temporal behaviour of a component to a concrete application

• Define the workload that a component can generate in an application

 Real-time models formulated independently of the analysis tools, using MARTE, but: 
 MARTE is defined at “instance” level => Parameterization is needed for reusability and 

composability
• ¿MARTE variables?

 MARTE, specially the SAM chapter, is oriented to formulate the temporal behaviour of reactive 
systems but at a low abstraction level

• Higher-level modelling abstractions that maps the ones used in the design (Components, Nodes and 
Networks) are needed 

– They exist in MARTE, but a formalization of their mapping to the SAM chapter should be defined.

– ¿Only MARTE? ¿SySML? ¿UML 2?

 Analysis tools
 Non-linear transactions are very typical when combining different components => We have used 

simulation, but analytical tools must be implemented


