
Modeling and Verification of Memory Architecture with
AADL and REAL

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France
{stephane.rubini,frank.singhoff}@univ-brest.fr

Jérome Hugues - University of Toulouse, ISAE, France
jerome.hugues@isae.fr

April 27, 2011

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 1 / 23

Outline

1 Why to model memory systems ?
Memory components are not universals
The memory hierarchy
Memory Layout Examples

2 Modeling of memory

3 Check the consistency of the model

4 Conclusion and futher works

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 2 / 23

Why to model memory systems ?

Architecture Von Neumann

But, today’s memory systems
are not so simple !

Few types of memories

The universal memory
technology, suitable to all needs,
does not exist.

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 3 / 23

Why to model the memory systems ? (2)

Design space of a memory system

Performances (capacity, latency, data rate)

Capabilities (persitency, supported operations, access type and ports)

Other criteria (reliability, consumption, cost, robustness, . . .)

In a computer system (embedded), the memory is a resource which must be
characterized.

Design phase : complexity, cost

Verification and validation : software usage (amount of resources, access
time variability, technological limits, . . .)

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 4 / 23

The memory hierarchy

Memory wall, consumption⇒ memory hierarchy, cache memories (1 or
more levels)

1 variable = 1 or more physical storage locations
⇒ Coherency (read sensitive address, Direct Memory Access)
⇒ Predictability (how to evaluate the WCET ?)
⇒ Shared memory in multi-processor context

Memory levels

Needs to control how the data
are managed within the
memory hierarchy.

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 5 / 23

The memory hierarchy: logical and virtual address

One logical address space per process (or task)

Address translation: logical address→ physical address in the real
memory

Process (or task) isolation

Logical address spaces Virtual address spaces

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 6 / 23

Memory layout examples

VxWorks (MC68040 board)
Physical address space

sysMemTop() System memory pool

Size of 0x1000 Interrupt stack
Boot code and data

_end symbol system image
(Text, data, BSS)

0x1000
Initial stack

0x0900
Exception messages

0x0800
Boot line

0x0700
Reserved

0x0120
Interrupt vectors

0x0000

Windows Embedded CE6
Logical address space

FFFF FFFF
Static Mapped

A000 0000 Uncached
Static Mapped

8000 0000 Cached

Shared System Heap
7000 0000

Memory Mapped Objects
6000 0000

Shared User Mode DLL
4000 0000

Per process
virtual space

code
0000 0000 reserved

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 7 / 23

Outline

1 Why to model memory systems ?

2 Modeling of memory
Modeling Guideline and Goals
AADL Properties
Examples

3 Check the consistency of the model

4 Conclusion and futher works

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 8 / 23

Modeling Guideline

Hardware modeling

Describe the physical features of memory components.

Describe their mapping within the physical address space of a processor.

Software view modeling

Describe the memory segments as defined by the OS and the
applications. A memory segment is a range of address dedicated to a
given usage, which must support a same set of operations.

Describe their mapping within the address space (process memory
layout) ; this layout may be different than the physical one.

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 9 / 23

Modeling goal and Exploitation

1 Define the matching (static) between the software view and the hardware
implementation of the target memory system.

2 Validate the software requirements and the physical features of the target
memory features match.

3 Control the development chain for targeting a given memory system.
4 Estimate, from the model, the quantitative and functional memory

requirements for a software component.
5 Back-annotate (update) the model with the memory usage information

arises from the code generation.

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 10 / 23

Core AADL Properties useful for memory models

Base_Address : aadlinteger 0 .. Max_Base_Address address
of the first word in the memory

Source_Stack_Size: Size, Source_Heap_Size: Size,
Source_Data_Size: Size, Source_Code_Size: Size maximum
size of respectively the stack, heap, data and code

Word_Space: aadlinteger 1 .. Max_Word_Space => 1 word
alignment constraints

Word_Size: Size => 8 bits smallest independently readable and
writable unit of storage in the memory

Byte_Count: aadlinteger 0 .. Max_Word_Count number of
bytes in the memory

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 11 / 23

Properties from the ARINC653 annex

Supported_Access_Type : type enumeration (read, write,
read_write)
Access_Type : Supported_Access_Type

Supported_Memory_Kind : type enumeration (memory_data,
memory_code)
Memory_Kind : Supported_Memory_Kind

Limitations :

The memory types do not encompass the diversity of the usage of the
memory segments.

The access types do not represent all the operational aspects bound to
some memory technologies.

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 12 / 23

New properties

segment_kind, precises the segment type: (1) address space or (2)memory
segment.

1 An address space represents only a range of memory addresses. The
property address_kind models the actual implementation of the
address:

I physical: the address selects directly a word stored in a memory
component (in fact a semiconductor memory);

I logical: the address selects a word stored in a memory component,
optionally after an address translation;

I virtual: the address selects a word stored in the main memory, or in a
slower secondary memory device;

I io_register: address registers to control or communicate with
input/output (read-sensitive locations).

2 A memory segment represents a set of memory words accessible within a
range of addresses. One and only one word is mapped to each address.

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 13 / 23

Additional properties

aadl_project.aadl: access type and memory kind defined per project

Supported_Memory_Kind : type enumeration (t ex t , stack , heap , bss , data_seg , memory_system_pool) ;
Supported_Access_Type : type enumeration (read , wr i te , execute , s low_wr i te , erase) ;

memory_segment_properties.aadl: an additional property set

property set Memory_Segment_Properties is
Supported_Address_Kind : type enumeration (physical_as , l og i ca l_as , v i r t u a l _ a s , i o _ r e g i s t e r _ a s) ;
Address_Kind : Supported_Address_Kind applies to (memory) ;
Supported_Segment_Kind : type enumeration (memory_segment , address_space) ;
Segment_Kind : Supported_Segment_Kind applies to (memory) ;
Page_Size : Size applies to (memory) ;

end Memory_Segment_Properties ;

arinc653_properties.aadl: an update proposition

−− Supported_Access_Type : type enumeration (read , wr i te , read_wr i te) ; i n t o aad l_p ro jec t
−− Supported_Memory_Kind : type enumeration (memory_data , memory_code) ;

Access_Type : l i s t o f Supported_Access_Type applies to (memory) ;

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 14 / 23

Layout of the memory

Layout of the segment "system image"

memory implementation memory_segment . system_image
subcomponents

seg_text : memory memory_segment . impl {
Base_Address => 016#001000#;
ar inc653 : : Memory_Kind => t e x t ;
ar inc653 : : Access_Type => (execute , read) ;
Byte_Count => 3000; } ;

seg_bss : memory memory_segment . impl {
Base_Address => 016#003000#;
ar inc653 : : Memory_Kind => bss ; } ;

seg_data : memory memory_segment . impl {
Base_Address => 016#002000#;
ar inc653 : : Memory_Kind => data_seg ; } ;

properties
Base_Address => 016#001000#;
ar inc653 : : Memory_Kind => image ;

end memory_segment . system_image ;

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 15 / 23

Binding logical and physical view

system implementation vxworks . impl
subcomponents

process1 : process node_a . impl ;
l o g i c a l _ a s : memory address_space . vxworks ;
phys ica l_as : memory address_space . mv162 ;
cpu1 : processor MC68040 . impl ;

properties
Actual_Memory_Binding => (re ference (l o g i c a l _ a s)) applies to process1 ;
−− Binding ‘ ‘ sof tware−view ’ ’ memory to the process
Actual_Memory_Binding => (re ference (phys ica l_as)) applies to cpu1 ;
−− Binding ‘ ‘ hardware−view ’ ’ memory to the processor
Actual_Processor_Binding => (re ference (cpu1)) applies to process1 ;

end vxworks . impl ;

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 16 / 23

Outline

1 Why to model memory systems ?

2 Modeling of memory

3 Check the consistency of the model
Ocarina, REAL annex
What can we check ?
REAL Theorem Examples

4 Conclusion and futher works

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 17 / 23

REAL Language

REAL (Requirement Enforcement Analysis Language), a Domain-Specific
Language, implemented as an AADL language annex.

Based on set theory and associated mathematical notations, a REAL
theorem verifies an expression over all the elements of a set of AADL
entities.
Checking constraints enforcement on AADL architectural descriptions at
the specification step:

I Enabling easy navigation through AADL model elements;
I Allowing for modularity through definition of separate constraints that can

be later combined;
I Being integrated as an AADL annex language, constraints are coupled to

models.

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 18 / 23

What can we check on the memory model

We defined 21 REAL theorems to be validated on a model.

1 General memory layout constraints check whether the memory layout as
described by the AADL model is consistent with its definition:

I usage of modeling patterns, size of segments, non-overlapping of
segments.

2 Software binding constraints check that software components memory
requirements match the resources provided by the hardware:

I address space binding, access types, address translations, software
segment sizes.

3 Alignment constraints ensure all memory boundaries are correctly
aligned:

I word size and page size alignments.
4 Specifics VxWorks constraints:

I software segment sizes and order.

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 19 / 23

Check the memory model: example 1

Within a memory segment that describes a range of memory words,
sub-segments cannot be "address space" segment.

Consistency check

theorem check_memory_segment_structure
foreach seg in Memory_Set do

sub_segments := { x in Memory_Set |
property_exists (seg , " Memory_Segment_Properties : : Segment_Kind ") and
property (seg , " Memory_Segment_Properties : : Segment_Kind ") = "memory"
and Is_Subcomponent_Of (x , seg) } ;

sub_memories := { x in sub_segments |
property_exists (x , " Memory_Segment_Properties : : Segment_Kind ") and
property (x , " Memory_Segment_Properties : : Segment_Kind ") = "memory" } ;

check (sub_segments = sub_memories) ;
end check_memory_segment_structure ;

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 20 / 23

Check the memory model: example 2

All the access types supported by a segment must be also supported by all its
sub-segments.

Consistency of the allowed access types

theorem check_allowed_access
foreach m in Memory_Set do

good_segments : = { x in Memory_Set |
Is_Subcomponent_Of (x , m) and (
not property_exists (x , " ar inc653 : : Access_Type ") or
Is_ In (property (m, " ar inc653 : : Access_Type ") ,

property (x , " ar inc653 : : Access_Type "))) } ;
segments : = { x in Memory_Set | Is_Subcomponent_Of (x , m) } ;

check (cardinal (good_segments) = cardinal (segments)) ;
end check_allowed_access ;

The REAL operator Is_In is used to check whether all the access rights of a
segment are included in the rights of its sub-segments.

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 21 / 23

Outline

1 Why to model memory systems ?

2 Modeling of memory

3 Check the consistency of the model

4 Conclusion and futher works

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 22 / 23

Conclusion

We have defined a set of AADL properties to describe more precisely a
system memory layout;

The REAL DSL has been shown to be useful in verifying the internal
consistency of the memory model;

A precise memory model⇒ Characterizing of Components Off The Shelf

Remains to be done

Control the development chain from the memory model→ generation of
linker scripts
Back-annotate the model from the produced code

I size and localization of the memory segment
I localization of the system objects
I estimation of the memory footprints of a system.

And so far : Cache Conscious Data Placement (CCDP)

Stéphane Rubini and Frank Singhoff - University of Brest, UEB, France {stephane.rubini,frank.singhoff}@univ-brest.fr Jérome Hugues - University of Toulouse, ISAE, France jerome.hugues@isae.fr ()Modeling and Verification of Memory Architecture with AADL and REAL April 27, 2011 23 / 23

	Why to model memory systems ?
	Memory components are not universals
	The memory hierarchy
	Memory Layout Examples

	Modeling of memory
	Modeling Guideline and Goals
	AADL Properties
	Examples

	Check the consistency of the model
	Ocarina, REAL annex
	What can we check ?
	REAL Theorem Examples

	Conclusion and futher works

