
Introduction
Formalisms
Verification
Conclusion

Two formal semantics of a Subset of AADL

Z. Yang1, K. Hu1, J.-P. Bodeveix2, L. Pi2, D. Ma1, J.-P.
Talpin3

1BUAA, Beijing, China
2IRIT - Université Paul Sabatier, Toulouse, France

3INRIA-Rennes, Campus de Beaulieu, Rennes, France

April 2011

Formal Semantics 1/24

Introduction
Formalisms
Verification
Conclusion

Plan

1 Introduction

2 Formalisms
TASM
Semantics domain: TTS
Coq

3 Verification

4 Conclusion

Formal Semantics 2/24

Introduction
Formalisms
Verification
Conclusion

Context

Principles
Goal: verification of AADL models
Method: translation to an analysable formal language
(TASM here)
Problem: correctness of the transformation
Verification: Semantics-preserving transformation

Formal Semantics 3/24

Introduction
Formalisms
Verification
Conclusion

Semantics-preserving transformation

AADL model

formal model
(TASM)

semantics

semantics

model
transformation

behavioral
model

behavioral
model

bisimulation

Formal Semantics 4/24

Introduction
Formalisms
Verification
Conclusion

Formalisms

AADL:synchronous subset (periodic threads,
immediate/delayed communications)
Formal analysable language: TASM (Timed abstract state
machine)
Semantics domain: TTS (Timed Transition systems)
Meta-language: Coq (interactive proofs)

Formal Semantics 5/24

Introduction
Formalisms
Verification
Conclusion

TASM
Semantics domain: TTS
Coq

Plan

1 Introduction

2 Formalisms
TASM
Semantics domain: TTS
Coq

3 Verification

4 Conclusion

Formal Semantics 6/24

Introduction
Formalisms
Verification
Conclusion

TASM
Semantics domain: TTS
Coq

TASM (1)

TASM [Lundqvist, MIT]: Extension of abstract state machines
system: set of concurrent machines
machine: set of transitions updating local or shared
variables
time: duration associated to a transition
resources: consumed during transition execution

Formal Semantics 7/24

Introduction
Formalisms
Verification
Conclusion

TASM
Semantics domain: TTS
Coq

TASM (2)

computed: bool R0:
{
 t := 0;
 if write = true then
 write := false; read := true;
}

R1:
{
 t := 5; mem := 50;
 if read = true then
 read := false; computed := true;
}

R2:
{
 t := 0;
 else then skip
}

write: bool
read: bool

compute

producer

R:
{
 t := 7;
 if write = false then
 write := TRUE;
}

Formal Semantics 8/24

Introduction
Formalisms
Verification
Conclusion

TASM
Semantics domain: TTS
Coq

TASM (3)

Semantics
One machine: transition system

select a rule with satisfiable guard
compute update set (next value of updated variables)
wait for transition duration, consume (additively) resources
update environment

Composition of machines:
Asynchronous if zero-time transitions
Synchronous if non-zero time transitions

Formal Semantics 9/24

Introduction
Formalisms
Verification
Conclusion

TASM
Semantics domain: TTS
Coq

Timed Transition Systems

Definition
A TTS over a set of events Σ is a nuple

〈Q, Q0, P,−→, |=〉

where
Q is a set of states,
Q0 ⊆ Q is the set of initial states
P is a set of observables predicates
_ _−→ _ ⊆ Q × (T ∪ Σ)×Q is the timed transition relation
|=⊆ Q × P is a satisfaction relation.

Formal Semantics 10/24

Introduction
Formalisms
Verification
Conclusion

TASM
Semantics domain: TTS
Coq

Simulation relation

c1 c2

a1 a2

e

e

R R

∀c, c ∈ Q0
c ⇒ ∃a, R(c, a) ∧ a ∈

Q0
a

∀c1c2a1e,

c1
e−→ c2 ∧ R(c1, a1)

⇒
∃a2, a1

e−→ a2 ∧ R(c2, a2)

Formal Semantics 11/24

Introduction
Formalisms
Verification
Conclusion

TASM
Semantics domain: TTS
Coq

Compositional proof

Principle

∀i , TTS_TASMi ∼ TTS_AADLi

Πi=1..nTTS_TASMi ∼ Πi=1..nTTS_AADLi

Synchronous product of TTS

〈Q1, Q0
1 , P1,−→1, |=1〉 ⊗ 〈Q2, Q0

2 , P2,−→2, |=2〉
=

〈Q1 ×Q2, Q0
1 ×Q0

2 , P1 ∪ P2,−→, |=1 ∪ |=2〉

where
q1

e−→1 q′1 q2
e−→2 q′2

(q1, q2)
e−→ (q′1, q′2)

Formal Semantics 12/24

Introduction
Formalisms
Verification
Conclusion

TASM
Semantics domain: TTS
Coq

Coq and proof assistants

Several languages (maybe unified)

typed functional language (definition of functions)
rich type system (functions over types, dependent types,
...)
assertional language (definition of properties)
proof building language (assisted proofs)
proof tactic definition language (proof automation)

Formal Semantics 13/24

Introduction
Formalisms
Verification
Conclusion

TASM
Semantics domain: TTS
Coq

Coq (2)

Use of Coq
Definition of TTS, product, simulation
Definition of TASM and AADL abstract syntax
Definition of TASM and AADL semantics (as a product of
TTS)
Definition of AADL to TASM translation.
Proof of bisimulaiton.

Feasability validated on a small subset of AADL.

Formal Semantics 14/24

Introduction
Formalisms
Verification
Conclusion

Plan

1 Introduction

2 Formalisms
TASM
Semantics domain: TTS
Coq

3 Verification

4 Conclusion

Formal Semantics 15/24

Introduction
Formalisms
Verification
Conclusion

Abstract syntax of an AADL subset (Coq)

Record Thread: Type := {
WCET: Duration;
period: Duration;
dealine: Duration;
Iports: Set;
OPorts: Set

}.

Record Model: Type := {
thId: Set;
threads: thId → Thread;
connections: ∀ th, Iports (threads th) →

{th: thId & Oports (threads th)};
connectionType: ∀ th, Iports (threads th) → bool

}.
Formal Semantics 16/24

Introduction
Formalisms
Verification
Conclusion

Abstract syntax of a TASM subset

P ::= Ident := exp
| skip
| channel!
| channel?
| if exp then P
| time min .. max . P
| time next . P
| resource r (min,max) . P
| P ⊕ P choice
| P ⊗ P multi assignment

TASM ::= 〈Env, P ‖ ... ‖ P〉

Formal Semantics 17/24

Introduction
Formalisms
Verification
Conclusion

TASM semantics - TTS state space (Coq)

Variable to be updated at end of transition
Record UpdateSet: Type := mkUS {
date: Time;
updated: Vars sys -> Prop;
update: forall v, updated v -> Value sys v

}.

TASM state
Record TASMState: Type := mkTASMState {
currentTime: Time;
updateSets: mmId sys -> option UpdateSet;
currentEnv: Env (Vars sys) (Value sys)

}.

Formal Semantics 18/24

Introduction
Formalisms
Verification
Conclusion

Operational Semantics of the AADL subset

waiting_dispatch

waiting_execution

execution

completed

||_ip val(ip) := buffer(ip)
NextPeriod := NextPeriod+Period

||_ip:imm val(ip) := buffer(ip)

[hasCPU]

[date=NextPeriod &&
 inputs not in wait_dl]

||_op val(op) := ...
[w=0]

||_op buffer(dest(op)) := val(op)

[date + d <= NextPeriod]/delay(d)

[d <= w]/delay(d)/w := w-d

w := WCET

wait_deadline

||_op,ip:imm
 buffer(ip):=val(op)
hasCPU := false

[date+d<=Deadline]/
 delay(d)

Formal Semantics 19/24

Introduction
Formalisms
Verification
Conclusion

Translation of AADL to TASM

Trans_Thread(th) =
// dispatch
time 0 .
if state(th) = waiting_dispatch and
∀ thi ∈ prec(th), state(thi)6=wait_deadline then
state(th) := waiting_execution ⊗
⊗ip∈Iports(th) val(ip) := buffer(ip)

⊕
// waiting execution
time 0 .
if state(th)=waiting_execution and hasCPU(th) then

state(th) := execution ⊗
⊗ip∈Iports(th) ∪ Imm val(ip) := buffer(ip)

⊕ ...

Formal Semantics 20/24

Introduction
Formalisms
Verification
Conclusion

The main theorem (1)

AADL model TASM model

TTS TTS

AADL2TASM

TTS TTS

2-simulation

Formal Semantics 21/24

Introduction
Formalisms
Verification
Conclusion

The main theorem (2)

Coq statement (for one thread)
Theorem Thread2MM_simu1:
∀ th, simu _ _ A2T (ThreadPred sys th)

(MM_TTS AADL2TASM th)
(Thread_TTS sys th)
(AP2TLP th)
(P2LP th).

Theorem Thread2MM_simu2:
∀ th, simu _ _ T2A (ThreadPred sys th)

(Thread_TTS sys th)
(MM_TTS AADL2TASM th)
(P2LP th)
(AP2TLP th).

Formal Semantics 22/24

Introduction
Formalisms
Verification
Conclusion

Plan

1 Introduction

2 Formalisms
TASM
Semantics domain: TTS
Coq

3 Verification

4 Conclusion

Formal Semantics 23/24

Introduction
Formalisms
Verification
Conclusion

Conclusion and perspectives

Conclusion
Definition of the semantics of a (small) fragment of AADL.
Definition of the semantics of a fragment of TASM.
AADL2TASM transformation and correctness proof.
The proof is tedious and too dependent on AADL

Future work
A higher level formalism to express the reference
semantics.
Larger coverage of AADL.
Translation of this language to analysable languages.
Verification of this translator.

Formal Semantics 24/24

	Introduction
	Formalisms
	TASM
	Semantics domain: TTS
	Coq

	Verification
	Conclusion

