
ABV – A Verifier for the
Architecture Analysis and
Design Language (AADL)

Stefan Björnander, Cristina Seceleanu

Kristina Lundqvist, Paul Pettersson

Mälardalen University

Sweden

The PROGRESS Centre for Predictable
Embedded Software Systems

Outline

• Motivation

• Background

• Our Formal Analysis Framework

• The Denotational Semantics for AADL Elements

• The Implementation in Standard ML

• The ABV Model Checker

• Illustrative Examples

• Conclusions and Future Work

2

Motivation

Embedded Systems

• Microprocessor-based
systems embedded into
larger systems.larger systems.

• 99% of all software.

• Everywhere around us, from
mp3-players to nuclear
plants.

• Often expected to run for
years without failure.

3

Computerized Toaster

Space Shuttle Atlantis

Motivation

What Can Go Wrong?

• The Mercury Space Shuttle

• The Famous Fortran Bug:
“DO 10 I=1.10” instead of “DO 10 I=1,10”.“DO 10 I=1.10” instead of “DO 10 I=1,10”.

• The Mariner 1 Flight

• Its mission was to carry a probe to Venus.

• Due to a spelling error in the algorithm specification, the
mission was aborted and the shuttle destroyed after six
minutes.

4

Motivation

Software Design Issues

• Abstraction and Refinement

• Algorithms and Data Structures

• Modularity and Information Hiding• Modularity and Information Hiding

• Software Architecture

5

Motivation

Software Design Issues

• Abstraction and Refinement

• Algorithms and Data Structures

• Modularity and Information Hiding• Modularity and Information Hiding

• Software Architecture

6

Motivation

Software Architecture

• A system is the set of structures needed to reason
about the system, both its hardware and software.

• Model-Driven Architecture (MDA).• Model-Driven Architecture (MDA).

• Architecture Description Languages (ADLs).

• Formal Verification

7

Motivation

Software Architecture

• A system is the set of structures needed to reason
about the system, both its hardware and software.

• Model-Driven Architecture (MDA).• Model-Driven Architecture (MDA).

• Architecture Description Languages (ADLs).

• Formal Verification

8

Motivation

AADL

• A SAE (Society of Automotive Engineers) standard.

• Popular in the automobile and avionics industry.

• Models both the hardware and software of the • Models both the hardware and software of the
system. Supports encapsulation and inheritance.

• However:

• Has not yet, in total, been formally defined.

• Does not support formal verification.

9

Motivation

AADL

• A SAE (Society of Automotive Engineers) standard.

• Popular in the automobile and avionics industry.

• Models both the hardware and software of the • Models both the hardware and software of the
system. Supports encapsulation and inheritance.

• However:

• Has not yet, in total, been formally defined.

• Does not support formal verification.

10

Motivation

Formal Verification

• An act of proving or disproving suitable to
guarantee the correctness of the system.

• Using rigorous mathematical models, most often • Using rigorous mathematical models, most often
with assistance of a computer.

• True/False answers.

• Number answers.

• Formal Verification Methods

• Theorem Proving

• Model Checking

11

Motivation

Formal Verification

• An act of proving or disproving suitable to
guarantee the correctness of the system.

• Using rigorous mathematical models, most often • Using rigorous mathematical models, most often
with assistance of a computer.

• True/False answers.

• Number answers.

• Formal Verification Methods

• Theorem Proving

• Model Checking

12

Outline

• Motivation

• Background

• Our Formal Analysis Framework

• The Denotational Semantics for AADL Elements

• The Implementation in Standard ML

• The ABV Model Checker

• Illustrative Examples

• Conclusions and Future Work

13

The AADL Behavior Annex
• States
• Transitions
• State Variables with Initializations.

Background

Computation Tree Logic (CTL)

• Branching-time temporal logic.

• Models time as a tree structure
with a non-determined future.

all global p

Background

with a non-determined future.

• Properties

• Safety (all global)

• Liveness (all eventually)

• Reachability (exists eventually)

• Deadlock

• Mutual Exclusion

15

all eventually p

exists global p

exists eventually p

Outline

• Motivation

• Background

• Our Formal Analysis Framework

• The Denotational Semantics for AADL Elements

• The Implementation in Standard ML

• The ABV Model Checker

• Illustrative Examples

• Conclusions and Future Work

16

The Formal Analysis Framework

• Denotational Semantics

• Support Model Checking with CTL

• Implementation in Standard ML

• Line-to-line translation

• The ABV Tool

• Performs model checking on CTL
properties on AADL models.

• User-friendly graphical tool.

17

The Denotational Semantics

Denotational Semantics for AADL and
its Behavior Annex

• Formally defines a subset of AADL and its
Behavior Annex.Behavior Annex.

• Supports Model Checking.

• Implemented in Standard ML.

18

The Denotational Semantics

The AADL subset

• System

• System implementation

• Subcomponent• Subcomponent

• Connection

19

The Denotational Semantics

The AADL Syntax

20

The Denotational Semantics

The Behavior Annex Syntax

• Formalization of the whole annex

21

The Standard ML Implementation

• Purpose
• Automated model checking on CTL Properties.

• Motivation for Standard ML
• Small gap between Denotational Semantics and Standard ML.

• They are both based on the lambda-calculus.

• Constructs:
• if-then-else-statement

• let-in-blocks.

• Both supports recursively defined data types.

22

The Standard ML Implementation

The Feature Semantic Function

(* val feature = fn : Feature -> Value Table *)
fun feature (features (F1, F2)) =

let val port_table1 = feature F1 in

23

let val port_table1 = feature F1 in
let val port_table2 = feature F2 in

table_merge port_table1 port_table2 end end
| feature (inport I) =

table_set I (boolean_value false) table_empty
| feature (outport I) =

table_set I (boolean_value false) table_empty;

The Standard ML Implementation

• The AADL-to-ML Parser
• Translates the AADL source code and CTL property

specification to Standard ML format.

• Modules• Modules
• Symbol Table and Type Checking

• State Space Tree Generator

• CTL Property Evaluator

24

Type Checker Initializer Generator Evaluator

ADDL Model
CTL Property
Specifikation

State Space
Tree

Yes/No
Execution Time

State Space Tree Size
Execution Trace

The ABV Tool

The AADL and its Behavior
Annex Verifier (ABV)
• A tool for model checking of CTL

properties.properties.

• Implemented in Standard ML,
based on the Denotational
semantics.

• Encapsulated in an Eclipse plug-
in.

25

Safety Property
system SubSystem1

features

CriticalEnter: in event port;

CriticalLeave: out event port;

annex SubSystem1 {**

initializations

CriticalLeave!;

Example 1: Mutual Exlusion

CriticalLeave!;

states

Waiting :initial state;

Critical :state;

transitions

Waiting -[CriticalEnter?]-> Critical;

Critical -[true]-> Waiting {CriticalLeave!;}

**};

end SubSystem1;

…

system implementationMainSystem.impl

subcomponents

subSystem1: system SubSystem1;

subSystem2: system SubSystem2;

connections

event port subSystem1.CriticalLeave -> subSystem2.CriticalEnter;

event port subSystem2.CriticalLeave -> subSystem1.CriticalEnter;

endMainSystem.impl;

26

Example 1: Mutual Exlusion
Safety Property

• We want to prove that the subsystem1 and
subsystem2 subcomponents never reach their
critical sections at the same time.

27

• CTL Safety Property:
all global not (subSystem1.Critical and subSystem2.Critical)

Behavior Property

Example 2: The Production Cell System

• Based on an automated
manufacturing system (first
described by Lewerentz and

28

described by Lewerentz and
Lindner in 1995).

• Functionality:

• Moves a block throught
the system.

• Presses the block.

• Deposits blocks on belt. As depicted by Martin Ouimet, 2007.

Behavior Property

Example 2: The Production Cell System

• storer subcomponent

• StoredBlocks: counts the
number of processed

29

number of processed
blocks.

• We want to prove that a block
added at the beginning
reaches the end.

• CTL Liveness Property:
all eventually
storer.StoredBlocks = 1

Architectural Property

Example 2: The Production Cell System

• We want to prove that a signal does
not become overwritten before it is
read.

30

read.

• CTL Safety Property:
all global feedBelt.InBlockReady_count <= 1

Example 3: The Wolf, Goat, and Cabbage

system WolfGoatCabbage
annex WolfGoatCabbage_Annex
{**
state variables
WAteG, GAteC : integer;

initializations
WAteG := 0; GAteC := 0;

31

• Initial State: wgc.BWGC_

• CTL Reachability Property:

exists eventually wgc._BWGC

and (wgc.WAteG = 0)

and (wgc.GAteC = 0)

WAteG := 0; GAteC := 0;

states
BWGC_ : initial state;
BWG_C, BWC_G, BGC_W, BW_GC, BG_WC, BC_WG,
B_WGC, WGC_B, WG_BC, WC_BG, GC_BW, W_BGC,
G_BWC, C_BWG, _BWGC : state;

transitions
BWGC_ -[true]-> WGC_B;
BWGC_ -[true]-> GC_BW {GAteC := 1;}
…

**};
end WolfGoatCabbage;

system Main
end Main;

system implementation Main.impl
subcomponents
wgc : system WolfGoatCabbage;

end Main.impl;

• Scalability

• Trace Generation

Example 3: The Wolf, Goat, and Cabbage
Log File
0:
Transition: wgc.BWGC_ -> wgc.WC_BG
State: wgc = WC_BG, WAteG = 0, GAteC = 0

1:
Transition: wgc.WC_BG -> wgc.BWC_G
State: wgc = BWC_G, WAteG = 0, GAteC = 0

2:

32

2:
Transition: wgc.BWC_G -> wgc.C_BWG
State: wgc = C_BWG, WAteG = 0, GAteC = 0

3:
Transition: wgc.C_BWG -> wgc.BGC_W
State: wgc = BGC_W, WAteG = 0, GAteC = 0

4:
Transition: wgc.BGC_W -> wgc.G_BWC
State: wgc = G_BWC, WAteG = 0, GAteC = 0

5:
Transition: wgc.G_BWC -> wgc.BG_WC
State: wgc = BG_WC, WAteG = 0, GAteC = 0

6:
Transition: wgc.BG_WC -> wgc._BWGC
State: wgc = _BWGC, WAteG = 0, GAteC = 0

Outline

• Motivation

• Background

• Our Formal Analysis Framework

• The Denotational Semantics for AADL Elements

• The Implementation in Standard ML

• The ABV Model Checker

• Illustrative Examples

• Conclusions and Future Work

33

Conclusions
• The ABV Tool for Formal Verification of AADL

Models with CTL Properties

• Exemplified on Three Illustrative Systems

Conclusions and Future Work

• Exemplified on Three Illustrative Systems

• Promising Scalability

• Provides Insight on Architecture and Related
Behavior

34

Future Work
• At present: the state space tree becomes completely

generated before evaluation.

• Future: should be possibly to generate and evaluate

Conclusions and Future Work

• Future: should be possibly to generate and evaluate
the state space tree “on-the-fly”.

• Add time annotation to the transitions in order to
perform real-time analysis.

• Other architecture description languages, such as
MARTE or EAST-ADL as source language.

35

Questions
and

Thank You!

and
Suggestions?

www.idt.mdh.se/~sbr02
stefan.bjornander@mdh.se

36

