VA
| ¥V 4

ABV — A Verifier for the
Architecture Analysis and
Design Language (AADL)

Stefan Bjornander, Cristina Seceleanu
Kristina Lundqvist, Paul Pettersson

Malardalen University
Sweden

METC PRQGRESS

MALARDALEN REAL-TIME e for Predictable
SwipisH FOUNDATION for RESEARCH CENTRE mbedded Sofw s

VA

\ ¥ 4

Motivation
Background

Our Formal Analysis Framework
e The Denotational Semantics for AADL Elements

* The Implementation in Standard ML
 The ABV Model Checker
 Illustrative Examples

Conclusions and Future Work

AW MALARDALEN UNIVERSITY
QO SWEDEN

Embedded Systems

* Microprocessor-based
systems embedded into
larger systems.

* 99% of all software.

* Everywhere around us, from
mp3-players to nuclear
plants.

» Often expected to run for
years without failure.

Computerized Toaster

VA

\ ¥ 4

What Can Go Wrong?

 The Mercury Space Shuttle

The Famous Fortran Bug:
“DO 10 I=1.10” instead of “DO 10 I=1,10".

e The Mariner 1 Flight

Its mission was to carry a probe to Venus.

Due to a spelling error in the algorithm specification, the
mission was aborted and the shuttle destroyed after six
minutes.

VA
| ¥V 4

Software Design Issues
» Abstraction and Refinement
o Algorithms and Data Structures
e Modularity and Information Hiding
» Software Architecture

VA
| ¥V 4

Software Design Issues
» Abstraction and Refinement
o Algorithms and Data Structures
e Modularity and Information Hiding
e Software Architecture

VA

\ ¥ 4

Software Architecture

* A system is the set of structures needed to reason
about the system, both its hardware and software.

e Model-Driven Architecture (MDA).
* Architecture Description Languages (ADLSs).

Formal Verification

>

Software Architecture
* A system is the set of structures needed to reason
about the system, both its hardware and software.
e Model-Driven Architecture (MDA).

* Architecture Description Languages (ADLSs).
Formal Verification

VA

\ ¥ 4

AADL

* A SAE (Society of Automotive Engineers) standard.
* Popular in the automobile and avionics industry.

e Models both the hardware and software of the
system. Supports encapsulation and inheritance.
« However:

Has not yet, in total, been formally defined.
Does not support formal verification.

VA

\ ¥ 4

AADL

* A SAE (Society of Automotive Engineers) standard.
* Popular in the automobile and avionics industry.

e Models both the hardware and software of the
system. Supports encapsulation and inheritance.
« However:

Has not yet, in total, been formally defined.
Does not support formal verification.

VA

\ ¥ 4

Formal Verification

* An act of proving or disproving suitable to
guarantee the correctness of the system.

« Using rigorous mathematical models, most often
with assistance of a computer.

True/False answers.
Number answers.

* Formal Verification Methods
Theorem Proving
Model Checking

VA

\ ¥ 4

Formal Verification

* An act of proving or disproving suitable to
guarantee the correctness of the system.

« Using rigorous mathematical models, most often
with assistance of a computer.

True/False answers.
Number answers.

* Formal Verification Methods
Theorem Proving
Model Checking

VA

\ ¥ 4

Motivation
Background

Our Formal Analysis Framework
* The Denotational Semantics for AADL Elements
* The Implementation in Standard ML
 The ABV Model Checker
 Illustrative Examples

Conclusions and Future Work

VA
| ¥V 4

The AADL Behavior Annex
e States
e Transitions
« State Variables with Initializations.

ActualSpeed < ActualSpeed >
Too PreferredSpeed (Normal) PreferredSpeed Too
Slow) Fast
ActualSpeed = ActualSpeed = L
PreferredSpeed PreferredSpeed
ActualSpeed < ActualSpeed = ActualSpeed >

PreferredSpeed PreferredSpeed PreferredSpee

VA
| ¥V 4

Computation Tree Logic (CTL)
e Branching-time temporal logic.

e Models time as a tree structure
with a non-determined future.

* Properties
Safety (all global)
Liveness (all eventually)
Reachability (exists eventually)
Deadlock
Mutual Exclusion

A

all global p

PN

L e

all eventually p

exists global p

/G

exists eventually p

VA

\ ¥ 4

Motivation
Background

Our Formal Analysis Framework
e The Denotational Semantics for AADL Elements

* The Implementation in Standard ML
 The ABV Model Checker
 Illustrative Examples

Conclusions and Future Work

VA
| ¥V 4

Denotational Semantics
e Support Model Checking with CTL

Implementation in Standard ML
* Line-to-line translation

The ABV Tool

e Performs model checking on CTL
properties on AADL models.

o User-friendly graphical tool.

VA

\ ¥ 4

Denotational Semantics for AADIL and
its Behavior Annex

e Formally defines a subset of AADL and its
Behavior Annex.

e Supports Model Checking.
e Implemented in Standard ML.

VA
| ¥V 4

The AADL subset

e System

e System implementation
e Subcomponent

« Connection

y A
| V 4

The AADL Syntax

" sten)] =] i i 'fier .
Model == System SystemImpl SystemImpl gstm.n m;pleme]nta?Bonl[denil{ﬁe1
! entifier SystemImplBody end ;
System == System System S ImplBod g s 1Sy ! y ’
. ; vstemImplBody == ntionalSubcomponents
| system Identifier SystemBody end ; - ! : = P
.- l OptionalConnections
SystemBody == OptionalFeatures OptionalAnnex :
T : OptionalSubcomponents == subcomponents
OptionalFeatures == features Feature
| Subcomponent
Feature == Feature Feature Subcomponent == Subcomponent Subcomponent
| Identifier : in event port ; | Identifier : system Identifier ;
| Idenrifier : out event port ; OptionalConnections == connections Connection
Connection == Connection Connection

| event port Identifier . Identifier ->
Identifier . Identifier ;

y A
| V 4

The Behavior Annex Syntax
 Formalization of the whole annex

Annex := annex Identifier {** OptionalStateVariables Optionallnitializations = initializations Action
Optionallnitializations OptionalStates | e
OptionalTransitions **} ; OptionalTransitions == transitions Transition

OptionalStateVariables == state variables StareVariables | =

€ ransition = ransition Transition
' t T tion Ti t

StateVariables == StateVariable StateVariable | lde ”_T ifier [E-"P"'f’-515"0’? I-> Identifier

| Identifier : integer ; OptionalActions

OptionalStates == states State OptionalActions == { Action }

| =& | s
Sigie #= Suate Seate Action == Action Action
| Identifier : initial state ; | Ideniifier = Expression 3
‘. - 2 i 2 ‘ -
| Identifier : state | Identifier |
Expression == Identifier
!

| Expression ArithmeticOperator Expression
ArithmeticOperator ==+ | — | * | [|

VA
| ¥V 4

Purpose
o Automated model checking on CTL Properties.

Motivation for Standard ML

Small gap between Denotational Semantics and Standard ML.

They are both based on the lambda-calculus.

Constructs:
if-then-else-statement
let-in-blocks.

Both supports recursively defined data types.

VA
| ¥V 4

The Feature Semantic Function

feature : Feature — Table (* val feature = fn : Feature -> Value Table *)
feature [F1 Fs] = fun feature (features (F1, F2)) =
let port_table, = feature Fy in let val port_tablel = feature F1 in
let port_tables = feature Fa in let val port_table2 = feature F2 in
table_merge port_table, port_tables table_merge port_tablel port_table2 end end
feature [I : in event port] = | feature (inport 1) =
table_set I (boolean false) table_empty table_set | (boolean_value false) table_empty

| feature (outport I) =

feature [I : out event port] =
table_set | (boolean_value false) table _empty;

table set I (boolean false) table empty

VA
| ¥V 4

The AADL-to-ML Parser

e Translates the AADL source code and CTL property
specification to Standard ML format.

Modules

» Symbol Table and Type Checking
e State Space Tree Generator
e CTL Property Evaluator

CTL Property
ADDL Model Specifikation
l State Space l

Tree

Type Checker Initializer Generator Evaluator

y
y
y

Yes/No

Execution Time
State Space Tree Size
Execution Trace

>

The AADL and its Behavior
Annex Verifier (ABV)

A tool for model checking of CTL
properties.

Implemented in Standard ML,
based on the Denotational
semantics.

Encapsulated in an Eclipse plug-

11.

File Edit Mavigate Search Project OSATE Analyses | ABY Run wWindow Help

i e
Ld
& AADL Mavigator 532

, Plugin_Resources

= Plugin_Resources

M8 ABDL_Project, aadl (Modified)
B aaDL_Project. asx (Modified)
M8 ABDL_Properties, aad {Modified)
i”‘:”..; &ADL_Properties, agx| (Modified)
MR ACC.aad (Modified)
Mubes . aadl (Modified)
5 Mute, aax] (Modified)
A ProductionCell. aadl (Madified)
B productionCell asxl {Modified)
M8 SELaadl (Modified)

B sEr.aad (Modified)

wiolfGoat Cabbage_Eaten,aadl (Modified)

wolfzoatCabbage. aadl (Modified)

Settings

Specification
=0 Mutex.aadl o0
—— all global not (sub3y

system Sub3ysteml
features
CriticalEnter: in evr
Criticalleave: out e
annex SubSysteml {*FF
initiali=zations
Criticalleave!;
states
Waiting :initial =
Critical :state;
transitions
Waliting -[Critical
Critical -[true] —>
ww};

end SubSysteml;

VA
| ¥V 4

Safety Property

system SubSystem1
features
CriticalEnter: in event port;
CriticalLeave: out event port;
annex SubSystem1 {**
initializations
CriticalLeave!;
states
Waiting :initial state;
Critical :state;
transitions
Waiting -[CriticalEnter?]-> Critical,
Critical -[true]-> Waiting {Critical Leave!;}
1
end SubSystem1;

system implementation MainSystem.impl
subcomponents
subSystem1: system SubSystem1;
subSystem2: system SubSystem2;
connections
event port subSystem1.CriticalL.eave -> subSystem2.Critical
event port subSystem2.CriticalLeave -> subSystem1.Critical
end MainSystem.impl;

:Main System \

:subSystem

CriticalEnter?

oy

true

J

CriticalLeave!

CriticalLeave

CriticalEnter

CriticalEnter

CriticalLeave

:subSystem

CriticalEnter?

ad

true

J

CriticalLeave!

AW MALARDALEN UNIVERSITY
QO SWEDEN

Safety Property _

« We want to prove that the subsystemi1 and -
Subsystem2 SubCOmpOnentS never reaCh their Standard ML Path: | C:\Program Files) SMLMNIbin | [Brnwsel

. e . R Kermel Path: |C:'l,Semanti-:s'l,MLtoSemantics | [Brnwsel
crltlcal SeCtIOnS at the Same tlme- Temporary Path: |C:'|,Temp |[Br0wse]
Log File: | |
Display

o CTL Safety PrOperty: Tree Size Execution Time D?@_@_@_{_ -
Ok -Cancel

all global not (subSystem1.Critical and subSystem2.Critical)

Property Specification

Property Specification: | all global ot {subSwsteml, Critical and subSystemz, Critical) |

Result of Evaluation

& Property Specification: "all global nat (subSystem1.Critical and subSystem2, Critical)",
, 1) Resulk: True

Size of Generated Tree: 5 nodes.

Time: 905 milliseconds,

w A ¥
L V 4

Behavior Property

Based on an automated
manufacturing system (first
described by Lewerentz and
Lindner in 1995).

Functionality:

Moves a block throught
the system.

Presses the block.
Deposits blocks on belt.

Depaosit Belt -

Loader Feed Belt

As depicted by Martin Ouimet, 2007.

>

Behavior Property

storer subcomponent

StoredBlocks: counts the

number of processed
blocks.

We want to prove that a block
added at the beginning
reaches the end.

CTL Liveness Property:
all eventually
storer.StoredBlocks = 1

Property Specification

Property Specification: | all eventually storer,StoredBlocks = 1

Result of Evaluation §|

L

Property Specification: “all eventually storer, SkoredBlocks = 1",
Resulk: True

Size of Generated Tree: 845 nodes.

Time: 1156 miliseconds.

AW MALARDALEN UNIVERSITY
QO SWEDEN

Architectural Property property Specication

Property Specification: | all global FeedBelt, InBlockReady_count <=1 |

We want to prove that a signal does
not become overwritten before it is
read.

Result of Evaluation f'5_<|

- Property Specification: "all global FeedBelt, InBlockReady_count <= 1"
\:!‘) Result: True

CTL Safety Property:
all global feedBelt.InBlockReady_ count <=1

Size of Generated Tree: 845 nodes.
Time: 1140 miliseconds.

Loader FeedBelt

OutBlockReady InBlockReady

VA

\ ¥ 4

Left Bank ' Boat

Initial State: wge.BWGC_

CTL Reachability Property:

system WolfGoatCabbage
annex WolfGoatCabbage Annex
{**
state variables
WAteG, GAteC : integer;

) initializations
fehtBak \WAteG := 0; GAteC := 0;

states
BWGC _ :initial state;

BWG_C, BWC_G, BGC_W, BW_GC, BG_WC, BC_WG,
B_WGC, WGC_B, WG_BC, WC_BG, GC_BW, W_BGC,

G_BWC, C_BWG, BWGC: state;

transitions
BWGC_ -[true]-> WGC_B;
BWGC_ -[true]-> GC_BW {GAteC :=1;}

exists eventually wge._ BWGC ™

and (wgc.WAteG = 0)

and (wgc.GAteC = 0)

end WolfGoatCabbage;

system Main
end Main;

system implementation Main.impl
subcomponents
wgc : system WolfGoatCabbage;
end Main.impl;

AW MALARDALEN UNIVERSITY
QO SWEDEN

Scalability Log File

Transition: wgc.BWGC_ -> wgc.WC_BG

Trace Gener ation State: wge = WC_BG, WAteG = 0, GAteC = 0

1:
Transition: wgc.WC_BG -> wgc.BWC_G
State: wge = BWC_G, WAteG = 0, GAteC =0

Property Specification

Property Specification: | ewists eventually wac, _BWEC and (wae Wakes = 0) and {woe.GakeC = 0) | 2:
Transition: wgc.BWC_G -> wge.C_BWG
State: wge = C_BWG, WAteG = 0, GAteC =0
. 3
Result of Evaluation E| Transition: wge.C_BWG -> wgc.BGC_W

State: wge = BGC_W, WAteG = 0, GAteC =0
i) Property Specification: "exists eventually woc, _BwWEC and {wgc, Wakea = 0) and {wgc.GateC = 07",

Result: True

Size of Generated Tree: 135185 nodes, 4:

Time: 6762 miliseconds, ..

Path written ta File "C:\OutputiLogg. bxt”, Transition: WgCBGC_W -> WgCG_BWC

State: wge = G_BWC, WAteG = 0, GAteC =0

5:
Transition: wge.G_BWC -> wgc.BG_WC
State: wge = BG_WC, WAteG = 0, GAteC =0

6:
Transition: wge.BG_WC -> wgc._ BWGC
State: wge = _ BWGC, WAteG = 0, GAteC =0

VA

\ ¥ 4

Motivation
Background

Our Formal Analysis Framework
* The Denotational Semantics for AADL Elements
* The Implementation in Standard ML
 The ABV Model Checker
 Illustrative Examples

Conclusions and Future Work

VA

\ ¥ 4

Conclusions

e The ABV Tool for Formal Verification of AADL
Models with CTL Properties

« Exemplified on Three Illustrative Systems
e Promising Scalability

* Provides Insight on Architecture and Related
Behavior

VA

\ ¥ 4

Future Work

At present: the state space tree becomes completely
generated before evaluation.

Future: should be possibly to generate and evaluate
the state space tree “on-the-fly”.

Add time annotation to the transitions in order to
perform real-time analysis.

Other architecture description languages, such as
MARTE or EAST-ADL as source language.

Questions
and
Suggestions?

www.idt.mdh.se/~sbr02
stefan.bjornander@mdh.se

