Innovative System and Application Curriculum on Multicore Systems

Pangfen Liu¹, Greg C. Lee², Jenq Kuen Lee³, and Cheng-Yen Lin³

¹ National Taiwan University, Taipei, Taiwan.

- ² National Taiwan Normal University, Taipei, Taiwan.
- ³ National Tsing Hua University, Hsinchu, Taiwan.

MOE Embedded Software Consortium, Taiwan.

Outline

- Taiwan ESW Consortium
- Motivation
- Lab modules with Multicore systems
- Discussions
- Conclusion

Taiwan Embedded Software Consortium

- The Embedded Software Consortium, established in February 2004 in Taiwan, is the consortium funded by the Ministry of Education
- The ESW Consortium focuses the development of embedded software curriculum.
- We hope to provide a reference curriculum for universities in Taiwan to develop their embedded program.
- Currently conjunction with National Communications Program(NCP)

ESW Consortium

≻Hands-on Lab modules

≻Focus:

- •Basic/Advance embedded curriculum
- •Domestic embedded processor platforms
- •Open platforms (Android)
- •Multicore/Embedded Multicore platforms
- •ESW promotion
- •Embedded System Hardware/Software Design Contest

Embedded

Motivation

- The multicore architecture are increasingly important in system design
 - Amend traditional content of system education for multicore software development
- Shared ground between embedded multicore systems and high performance parallel systems
- Help students to learn the parallel design patterns of parallel programming to lay the foundations for advanced multicore system research.
- Government Support and Intel Collaboration

Multicore/Embedded Multicore Trends

Course Introduction

Number	Name	Introduction
ES-Y11-A1	Embedded application/software studio	Introduction to Android programming
ES-Y11-A2	Introduction to marketing place	Developing and business trend of embedded application will be introduced
ES-Y12-A1	Augmented reality applications for embedded systems	Advanced embedded software for augmented reality application and lab modules based on embedded hardware with sensors support
ES-Y12-A2	Android application design	Mobile application design and implementation in the Android environment
ES-Y13-A1	Mobile voice based application design	The introduction of voice recognition and UI control techniques based on mobile devices
ES-Y13-A2	Mobile embedded software design	Mobile applications design and lab modules on based domestic embedded platforms

Course Introduction

Number	Name	Introduction
ES-Y11-M1	Parallel programming in multicore systems	Principles and practice for parallel programming. Software studio are evaluated on Intel MTL
ES-Y11-M2	Introduction to real world application in MTL environment	Wide range of real world multicore applications will be introduced
ES-Y12-M1	Mobile + Cloud applications	The design and implementation of mobile cloud applications
ES-Y12-M2	Mobile + Cloud programming and system software	Understand the system software and programming tools for mobile cloud applications
ES-Y13-M1	Virtualization on embedded multicore systems	The advanced virtualization techniques for embedded system will be introduced
ES-Y13-M2	Multicore programming and power optimization	The power optimization techniques for multicore platform

Course Introduction

Number	Name	Introduction
ES-Y11-S1	Embedded compilers	Compiler techniques and system software development flow for embedded systems will be introduced
ES-Y11-S2	Innovative multimedia labs	The design and implementation of portable multimedia applications
ES-Y12-S1	Embedded multicore programming	Introduction to embedded multicore platforms and programming techniques
ES-Y12-S2	Embedded operating systems	Introduction to embedded operating systems
ES-Y13-S1	Dynamic compilers	Advanced dynamic compilation techniques will be introduced
ES-Y13-S2	Innovative Android system optimizations	Mobile system optimization techniques based on Android will be introduced

- Virtualization techniques on embedded systems
 - Process virtualization: language level, OS level, Cross-ISA
 - Device virtualization
 - System virtualization
 - Facilities
 - Prof. Wei-Chung Hsu(NCTU), Prof. Chi-Sheng Shih(NTU),... etc.

– Labs

- QEMU/LnQ
- JVM/CVM/KVM
- Xen/Opennebula
- OpenStack/Ubuntu UEC
- GPU+VMGL
- Hadoop+HDFS

Outline

- Introduction to virtual machines
- Fast emulation: dynamic binary translation
- Full virtualization and paravirtualization
 Architecture supports for virtualization
 KVM-based virtualization for ARMbased embedded systems
 Optimizations
- Hypervisor for embedded real-time
- systems
- Emerging applications of embedded system virtual machines

- **Embedded multicore** programming
 - Embedded multicore architectures
 - GPU/GP-GPU
 - OpenCL
 - Facilities
 - Prof. Ching-Hsien Hsu(CHU), Prof. Kuan-Ching Li(PU), Prof.Yuan-Shin Hwang(NTUST) ...etc.
 - Labs

Embedded

Consortium

 OpenCL programming on X86/ATI/NVIDIA

Outline

- Introduction to parallel programming GPU Architecture Introduction to OpenCL The programming model of OpenCL Synchronization
- Debugging techniques Case study for optimizations

OpenCL tutorial, IEEE HotChips, Aug.23, 2009

- Android programming
 - Understand the Android system
 - Mobile applications
 - Sensor applications

- Facilities

 Prof. Gwan-Hwan Hwang(NTNU), Prof. Shih-Hao Hung(NTU), Prof.Shang-Hung Wu Hwang(NTHU) ...etc.

– Labs

Embedded

- Android app widget
- GPS applications
- Android graphic applications

Outline

- Introduction to Android system
- Understand the development of Android app
- The app widget
- The Android UI design
- GPS/Sensor Applications
- Optimization techniques
- Advanced graphic applications
- Cloud and Devices

- Embedded system applications
 - The development of embedded applications
 - Domestic embedded platforms
 - Network & multimedia applications

Facilities

 Prof. Jyh-Cheng Chen(NCTU), Prof. Jing Chen(NCKU), Prof.Jyh-Shing Jang(NTHU) ...etc.

– Labs

- Wireless applications
- Speech and Audio applications

Outline

Embedded software design and practice ✓Cross compilation ✓ Embedded OS ✓ Device driver ➤Wireless applications ✓802.1X ✓ Socket programming ✓ Security standards Speech and Audio processing ✓ Audio signal processing ✓ Speech features ✓ Recognition techniques ➢PAC/PAC-DUO Introduction ✓ Toolchian ✓Media codecs

✓DVFS

Intel MTL/MOE Curriculum Program

- Intel collaborates with Taiwan MOE
- Intel provides the resources, trainings, tools and community
- Course materials design by Taiwan professors
- Two Lab Modules :
 - Lab Modules for Parallel Programming in Multicore Systems
 - Lab Modules of Parallel Programming on Real-World Applications
- 14Faculties: Pangfeng Liu (NTU), Jen-Wei Hsieh (NTUST), Rong-Guey Chang (CCU), Chao-Tung Yang (THU), Chih-Ping Chu (NCKU), Wuu Yang (NCTU), Greg Lee (NTNU), Tsung-Che Chiang(NTNU), Che-Rung Lee (NTHU), Li-Chun Wang (NCTU), Charles Wen (NCTU), Ren-Guey Lee (NTUT). Chung-Chih Lin (CGU), Che-Lun Hung (PU)

Intel MTL Environment

Embedded

Multicore Curriculum

- Software Tool Lab Modules for Parallel Programming in Multicore System
 - Principle of parallel programming
 - Programming models
 - Parallel algorithms
 - Tools for parallel programming
- Lab Modules for Real world Application
 - Real world application
 - Infection simulations, logic simulation, healthcare applications, monitoring applications with air quality...
 - Parallel design patterns

Infection Simulations on

Principle of Parallel Programming

- Multicore Systems
 - Shared/Distributed memory
- Level of Parallelism
 - Data parallelism
 - Task parallelism
- Parallel Programming Models
 - Pthread
 - OpenMP
 - MPI

Embedded

- CUDA
- MapReduce
- Amdahl's law

Amdahl's Law

Sandia's Version of Amdahl's Law

Design Patterns

- Brief introduction to design patterns
 - Proposed by C. Alexander for city planning and architecture.
 - Introduced to software engineering by Beck and Cunningham.
 - Become prominent in object-oriented programming by GoF.
- Design patterns describe "good solutions" to recurring problems in a particular context.
 - Patterns for object-oriented programming
 - Creational patterns, Structural patterns, Behavioral patterns, etc.
 - Patterns for limited memory systems
 - Compression, Small data structures, Memory allocation, etc.
 - Patterns for parallel programming

Embedded

Consortium

• Finding concurrency, Algorithm structure, Supporting structures and Implementation mechanisms.

Parallel Design Patterns

Parallelization can be a process to transform problems to programs by selecting appropriate patterns.

Finding Concurrency •

> decomposition of problems

- **Algorithm Structure**
 - appropriate algorithms
- **Supporting Structures**

appropriate program constructs

programs

Implementation • **Mechanisms** parallelized

Embedde

Consortium

Design Space of Parallel Patterns

- **Decomposition** patterns: {data, task}
- Dependency analysis patterns: {group tasks, order tasks, data sharing}
- Design evaluation pattern

How the given problem is organized?

- By **tasks**: {task parallelism, divide & conquer}
- By data decomposition: {geometric, recursive}
- By flow of data: {pipeline, event-based coord.}

Software constructs to express parallel algorithms

- Program structures: {SPMD, master/worker, loop parallelism, fork-join, client-server, SIMD}
- Data structures: {shared data, shared queue, distributed array}
- UE management: {thread/process creation/destr.}
- Synchronization: {barrier, mutex, mem fence}
- Communication: {msg passing, collective comm}

These patterns are summarized from the book, "Patterns for Parallel Programming" by Mattson et al

Lab Module: Principles of Parallel Programming

Lab Module: Multicore Programming with Thread Profiler

Project: Try the parallel the flash memory Performance simulator FAST bottleneck analysis with SAMSUNG 625 4G8G08 10M software tools CB0 Critical sectior Block Block: The basic unit for erase Loading balanc operation Waiting External Block 8191 event 64 Bytes Synchronization 2K Bytes overhead Spare Area Page: The basic unit for read/write operation Sequential -> Data Area Parallel Embedded

Lab Module: Air Quality Monitoring System over MTL platform

- Air Quality Monitoring with Sensors

 CO, CO₂,O₃
- Data Analyzing on Cloud System

Embedded

Lab Module: Development of short-term memory assessment tools and for healthcare applications

- **Dementia Diagnosing** System
 - PDA/hand held devices
 - Memory assessment system to help diagnosing dementia disease
- Cloud Database System
 - Global rating analysis for Alzheimer disease
 - Elder degenerative trend analysis

🔹 🔄 🍫 🗙 🙋 Bing 我的最爱(A) 工具(T) 說明(H) 🖼 新信匣: 33 封信 未... 🔗 失智症照護研究.. 🏠 ▼ 📉 ▼ 🖃 🚔 ▼ 網頁(P)▼ 安全性(S)▼ 工具(O)▼ 🕢▼

(2) 網際網路 | 受保護模式: 啟動

27

Workshop on Embedded Systems Education, 2011

Lab Module: Infection Simulations on Multicore Processors

- Mote Carlo Simulation
 - Predict the Infection trend
 - Build up the analyical model
 - Sequential ->
 Parallel
 - OpenMP
 - Pthread
 - Intel TBB

Amdahl's Law

Embedded

Consortium

Workshop on Embedded Systems Education, 2011

Lab Module: Implementation of Parallel Algorithm for Logic Simulation on Switching Network

- HOPE
 - A fault simulator for synchronous sequential circuits
 - Parallel fault simulation techniques
- Performance analysis
 - gprof

Embedded

Consortium

- Identify the bottlenecks

Lab Module: Parallel Computing for Wireless Simulation Platforms

- Apply the concept of parallel computing to expedite comprehensive wireless system simulations.
- Dynamically changing environments
 - Radio channel characteristics
 - Terminal mobility
- Complex scenarios—Many "multiples"
 - Multiple paths
 - Multiple base stations
 - Multiple users

Embedded

- Multiple antenna
- Multiple networks

Lab Module: Parallelizing Memetic Algorithm Using OpenMP

Metaheuristics

- Characteristics
 - Category of approximation algorithms for optimization problems.
 - Tool for solving hard optimization problems
 - Scheduling, routing, clustering
 - Iterative processes
 - Memetic Algorithm
 - Genetic Algorithm
- Components

Embedded

- Solution encoding/decoding schemes
- Neighborhood functions
- Selection/acceptance criteria
- Stopping criteria

Online Judge System

- ACM online judge style system
- Check and grade programming homework
- A platform for inclass worksheets and midterm evaluation
- Parallel processing

Embedded

Making Progress

 Understand Students' progress by their submission results of worksheets

	Worksheet 1 2011/3/26	Worksheet 2 2011/4/13	Worksheet3 2011/4/20
# of students solved the problem	47/75	72/75	75/75
Average # of trials till success	2.2	2.8	1.7

From the course, principle of parallel programming

Midterm Scoring

Floating Number Sorting

Embedded

Consortium

Software

0 0 10 20 30 40 50 60 70 80 90 100 score				0	10	20	30	4	
	min	max	averag e	-				Mi	r
Time(s)	0.657065	4.767353	1.733752		Tim	e(s)	0.2	264
Number of submission		330		Nu su	ım k bm	ber niss	r of sior	י ר	
Number of people		75		Number of		: 			
Average number of submissions		4.4		Average n submission		ม าร			

	Min	max	averag e
Time(s)	0.264323	8.894231	1.436465

Number of submission	110
Number of people	75
Average number of submissions	1.47

Term Projects

- Student propose the proposal for their term project
 - Application
 - Programming Model
- Selected Projects
 - From Neural Networks Implementations to Find out the Advantage of Parallel Programming
 - Automatic Panoramic Image Stitching using Invariant Features
 - Use Cuda to Implement a Path Finding Algorithm
 - Motion Estimation on CUDA
 - Use CUDA to simulate ocean, and render the scene with OpenGL
 - A Social Network Centrality Analyzer
 - Ray-Tracing Parallelization
- Course site
 - https://sites.google.com/site/ntucsiepp2011/home

Conclusion

- We developed a series of system software and application lab modules on multicore system.
- These lab modules involve various topics of multicore programming techniques and real world multicore applications
- We trained students with capabilities to develop multicore applications.
- The parallel design patterns is introduced to lay the foundations for advanced multicore system research.
- MTL-based lab modules show good promises for further devising innovative system curriculum.

