

Embedded System Design 2.0: Rationale Behind a Textbook Revision

© Alexandra Nolte, Gesine Marwedel, 2003

Peter Marwedel, Michael Engel TU Dortmund, Germany

Problem addressed (1)

- Embedded systems frequently not integrated into curricula
- Lecturers of existing courses are faced with problem:
 - Selection of content
 - Difficult for the non-specialist to find a good survey
 - Selection of text book
 - Many of the available text books at a too low level:
 Programming of microprocessors, memory maps, interrupts, ...
 & rehash of computer architecture topics

Problem addressed (2)

- 1st edition of my own book was published in 2003, not taking recent results and focus shifts into account
 - Little emphasis on models of computation
 - No real-time calculus
 - No computation of WCET
 - No mapping to multi-processors
 - No reference to cyber-physical systems
 - No coverage of reliability

Related work

- P. Caspi, et al.: Guidelines for a graduate curriculum on embedded software and systems, ACM TECS, 2005
- Shiao-Li Tsao et al.: The development and deployment of embedded software curricula in Taiwan. SIGBED Rev., 4:64–72, January 2007
- A. Jantsch: Modeling Embedded Systems and SoC's: Concurrency and Time in Models of Computation, 2004
- R. Zurawski (ed.): Embedded Systems Handbook, 2006.
- D. Gajski et al.: *Embedded System Design*, 2009
- H. Kopetz: Real-Time Systems: Design Principles for Distributed Embedded Applications, 2011
- E. A. Lee et al.: Introduction to embedded systems, a cyber-physical systems approach, 2011.

SCOPE

- How to distinguish between embedded systems (ES) and cyber-physical systems (CPS)?
- Position:
 Cyber-physical system (CPS) =
 Information processing (ES) + physical environment
- Impossible to cover physical environment at depth
- ES remains relevant by itself, but impact of link to physical environment should be highlighted
- Distinction between small computing platforms (e.g. small phones) and ES integrated into physical environment

Content selection

- Listening to conference presentations
- Reading publications
- Listening to colleagues from industry
- Logical links in the selected material
- Experience with > 10 years of teaching the subject
- Experience with using the 1st edition of the book

Structure

- One chapter each on specification & modeling, HWcomponents, system software application mapping, evaluation & validation, optimization, test
- Clear structure facilitates integration of custom material

New structure for specification and modeling

Focus shifted from languages to models exemplified by languages

Communic./	Shared	Message passing	
Organiz. of	memory	synchronous	asynchronous
components			
Undefined	Plain te	lain text or graphics, use cases	
components		(Message) sequence charts	
Communi-	StateCharts		SDL
cating finite			
state ma-			
chines			
Data flow	(not use-		Kahn
	ful)		process
			net-
			works,
			SDF
Petri nets		C/E nets, P/T nets,	
Discrete	VHDL,	(Only experimental systems)	
event (DE)	Verilog	(Distributed DE in Ptolemy)	
model^1	SystemC		
Von-	C, C++,	C, C++, Java with libraries	
Neumann	Java	CSP, ADA	
model			

Chapter on HW: Extended coverage of A/D- and D/A-conversion

- Observation: difficulties with understanding A/Dand D/A conversion
- Impossible to include full sampling theory
- Signals formally introduced
- Limited reconstruction demonstrated by an example
- Op-amp explained in appendix

Chapter on evaluation and validation

- Evaluation techniques more mature than in 2003
- Focus on multi-objective modeling, added introduction of Pareto-optimality
- Including more objectives than before
 - WCET, real-time calculus
 - Reliability modeling
 - Energy, power
- Close link to validation due to similar techniques being used

Other chapters: system software, optimizations and testing

- Chapter on embedded operating systems changed into chapter on embedded system software
- Optimizations: Clearer than in 2003:

We can cover only examples of optimizations

Examples used: Task level concurrency management, high-level optimizations, compilers for embedded systems, power management and thermal management

Testing:

Link to testing should be maintained, but this topic may be skipped for shorter editions of the course.

Other extensions

 Integration of simulation software, e.g. for FlexRay® communication

Video recording

"EMBEDDED SYSTEMS" LECTURE VIDEOS PART 18 (05.07.2010)

Assignments

Evaluation (1)

- Translation into local language well received
- Students: Extending coverage of programming ES! (conflict between fundamentals and practical training)
- Colleague: More detailed coverage of topics (again being limited by available time)
- At Cyprus: Coverage of evolutionary algorithms requested (serious description would require copying many pages)
- At several universities: new course required to precede course based on the book (book sometimes used at graduate level)
- E. Lee: listing book as complementing his book on CPS

Evaluation (2)

- Defining starting knowledge for anyone working on ES
- Used for 1st day in ES summer school at Beijing in 2011

Summary

- Continuing need to support ES teaching by text book
- Earlier text book needed an update
 - From languages to models exemplified by languages
 - RTOS chapter extended into chapter on system SW
 - More detailed coverage of A/D- and D/A-conversion
 - Introduced chapter on mapping of applications
 - Introduced chapter on evaluation and validation
 - Representative set of optimizations
 - Simulation software, videos, and assigments integrated

