Embedded System Design 2.0: Rationale Behind a Textbook Revision

Peter Marwedel, Michael Engel
TU Dortmund, Germany

© Alexandra Nolte, Gesine Marwedel, 2003
Problem addressed (1)

- Embedded systems frequently not integrated into curricula

- Lecturers of existing courses are faced with problem:

 • Selection of content
 - Difficult for the non-specialist to find a good survey

 • Selection of text book
 - Many of the available text books at a too low level: Programming of microprocessors, memory maps, interrupts, … & rehash of computer architecture topics
Problem addressed (2)

- 1st edition of my own book was published in 2003, not taking recent results and focus shifts into account
 - Little emphasis on models of computation
 - No real-time calculus
 - No computation of WCET
 - No mapping to multi-processors
 - No reference to cyber-physical systems
 - No coverage of reliability
Related work

- P. Caspi, et al.: Guidelines for a graduate curriculum on embedded software and systems, ACM TECS, 2005
- Shiao-Li Tsao et al.: The development and deployment of embedded software curricula in Taiwan. SIGBED Rev., 4:64–72, January 2007
- E. A. Lee et al.: Introduction to embedded systems, a cyber-physical systems approach, 2011.
SCOPE

- How to distinguish between embedded systems (ES) and cyber-physical systems (CPS)?

- Position:
 Cyber-physical system (CPS) = Information processing (ES) + physical environment

- Impossible to cover physical environment at depth

- ES remains relevant by itself, but impact of link to physical environment should be highlighted

- Distinction between small computing platforms (e.g. small phones) and ES integrated into physical environment
Content selection

- Listening to conference presentations
- Reading publications
- Listening to colleagues from industry
- Logical links in the selected material
- Experience with > 10 years of teaching the subject
- Experience with using the 1st edition of the book
Structure

- One chapter each on specification & modeling, HW-components, system software application mapping, evaluation & validation, optimization, test
- Clear structure facilitates integration of custom material
New structure for specification and modeling

Focus shifted from languages to models exemplified by languages

<table>
<thead>
<tr>
<th>Communic./ Organiz. of components</th>
<th>Shared memory</th>
<th>Message passing synchronous</th>
<th>asychronous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undefined components</td>
<td>Plain text or graphics, use cases (Message) sequence charts</td>
<td>StateCharts</td>
<td>SDL</td>
</tr>
<tr>
<td>Communicating finite state machi-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nes</td>
<td>(not useful)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data flow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petri nets</td>
<td></td>
<td>C/E nets, P/T nets, ...</td>
<td></td>
</tr>
<tr>
<td>Discrete event (DE) model1</td>
<td>VHDL, Verilog SystemC</td>
<td>(Only experimental systems) (Distributed DE in Ptolemy)</td>
<td>C, C++, Java with libraries CSP, ADA</td>
</tr>
<tr>
<td>Von-Neumann model</td>
<td>C, C++, Java</td>
<td></td>
<td>C, C++, Java with libraries CSP, ADA</td>
</tr>
</tbody>
</table>

1 Discrete event (DE) model.
Chapter on HW:
Extended coverage of A/D- and D/A-conversion

- Observation: difficulties with understanding A/D- and D/A conversion
- Impossible to include full sampling theory
- Signals formally introduced
- Limited reconstruction demonstrated by an example
- Op-amp explained in appendix
Chapter on evaluation and validation

- Evaluation techniques more mature than in 2003
- Focus on multi-objective modeling, added introduction of Pareto-optimality
- Including more objectives than before
 - WCET, real-time calculus
 - Reliability modeling
 - Energy, power
- Close link to validation due to similar techniques being used
Other chapters: system software, optimizations and testing

- Chapter on embedded operating systems changed into chapter on embedded system software

- Optimizations: Clearer than in 2003:

 We can cover only examples of optimizations

 Examples used: Task level concurrency management, high-level optimizations, compilers for embedded systems, power management and thermal management

- Testing:

 Link to testing should be maintained, but this topic may be skipped for shorter editions of the course.
Other extensions

- Integration of simulation software, e.g. for FlexRay® communication
- Video recording
- Assignments
Evaluation (1)

- Translation into local language well received

- Students: Extending coverage of programming ES! (conflict between fundamentals and practical training)

- Colleague: More detailed coverage of topics (again being limited by available time)

- At Cyprus: Coverage of evolutionary algorithms requested (serious description would require copying many pages)

- At several universities: new course required to precede course based on the book (book sometimes used at graduate level)

- E. Lee: listing book as complementing his book on CPS
Evaluation (2)

- Defining starting knowledge for anyone working on ES
- Used for 1st day in ES summer school at Beijing in 2011
Summary

- Continuing need to support ES teaching by text book
- Earlier text book needed an update
 - From languages to models exemplified by languages
 - RTOS chapter extended into chapter on system SW
 - More detailed coverage of A/D- and D/A-conversion
 - Introduced chapter on mapping of applications
 - Introduced chapter on evaluation and validation
 - Representative set of optimizations
 - Simulation software, videos, and assignments integrated