Practical Embedded Systems Engineering Syllabus for Graduate Students with Multidisciplinary Backgrounds

Bastian Haetzer Gert Schley Rauf Salimi Khaligh **Martin Radetzki**

Embedded Systems Engineering / CSEE / U Stuttgart

Overview

- 1. Context
- 2. Embedded systems courses
- 3. Practical (lab) course
- 4. Experiences
- 5. Conclusion

INFOTECH Master

- INFOTECH is a multidisciplinary (EE & CS) international master program
 - On top of a qualifying Bachelor degree
 - Leading to a Master of Science Degree (M.Sc.) in Information Technology
 - With a regular study time of 4 terms (3 teaching + 1 Master Thesis)
- > Is truly international
- > Is multidisciplinary
- > 4 specializations (majors) can be selected
 - Communication Engineering and Media Technology
 - Embedded Systems
 - Micro- and Optoelectronics
 - Computer Hardware/Software Engineering

www.uni-stuttgart.de/infotech

History and Facts

- has been set up in 1999 (is in its 12th year)
- Attracted some 9500 applications
 - Had applications from graduates of more than 1000 different universities
 - From 116 different countries
- Admitted some 600 students
- Conferred 310 Master Degrees
- Offers 4 majors
- Is supported by some 20 professors of the faculty (faculty total of 30), 10 professors from other faculties and some 5 industry lecturers
- Some 55 Lecture Courses
- Some 10 Lab Courses
- Some 10 Seminars
- Currently admits 80 students / yr from > 1200 applicants

Admission Selection

Part-view of Applicants Database

- Several "Competition Groups" (e.g. World, Partner, etc.)
- Selection mainly on GPA basis
 - Within group / University/ Country/ World
 - Based on comprehensive experience and reference data from previous applications
 - With weighted GPA (Itec Performance Factor)
 - And based on Ranking of applicant
 - And based on "Reputation of University" (Media, Own experience)

The Curriculum INFOTECH Master

Basic Modules (1st Term)

Basic Modules (BM)

- Advanced Higher Mathematics (AHM)
- "Container" Electronics and Communication (EC) with
 - Communications (Com)
 - System and Signal Theory (SST)
 - Radio Frequency Technology (RF)
 - Electronic Circuits (EIC)
- "Container" Computer Science (CS) with
 - Programming Languages (PL)
 - Computer Architecture and Organization (CAO)
 - Data Structures and Algorithms (DSA)
 - Operating Systems (OS)

Embedded Systems Core Modules

Core Modules (CM): 5 out of 12

- Advanced Processor Architecture
- Communication Networks I
- Communications III
- Design and Test of Systems-on-a-Chip
- Distributed Systems
- Embedded Systems Engineering
- Industrial Automation Systems
- Intelligent Sensors and Actors
- > Modelling, Simulation and Specification
- Real-Time Programming
- Software Engineering for Real-Time Systems
- Statistical and Adaptive Signal Processing

999 - 2000

Master

10-Years

Syllabus design

ES syllabus focus areas

Application-oriented

Multimedia | Automotive | Robotics | ...

ESE lecture with exercises

Theory (exercises on paper, with ILP): High-level synthesis: from algorithm to RTL, Pipelined data paths and controllers, Software scheduling: periodic and sporadic, Software on bare CPU vs. RTOS, schedulability tests, System architecture, storage and communication, HW/SW integration

Practice (exercises in lab):

Task 1	Session 1	Processor-peripheral communication with memory-mapped I/O
Task 2	Session 2	Implementation of the interrupt handler
Task 3	Homework	Design of a frame-based scheduler
Task 4	Session 3	Implementation of a framed-based scheduler
	Session 4	

Embedded Systems Lab

Lab design trade-offs

Lab experiments	Structured lab assignment	Large project
+ guidance + focus – no big picture	Lab	 (+) motivation + overview – getting lost

Norking individually	Working in groups	Project team
+ grading	+ learn from each other	+ real-world
+ focus Lab	– one does all the work	+ soft skills
+ individual advice	+ higher admission possible	 teaching costs

Fixed assignment	Individual assignments	Self-assignment
+ costs	+ adaptation to interests	(+) motivation
+ focus both	 arbitration necessary 	– risk
 – invites plagiarism 	 teaching costs 	 teaching costs

Design flow

Canonical embedded systems design flow

specification partitioning hardware software interface design design design integration verification

Design flow in lab

FPGA platform

Initial try: ARM 7/9 + FPGA

Xilinx Univ. Programme boards

old: XUPV2P Virtex-II

new: XUPV5 Virtex-5

Lab assignment (old)

Part 1	Session 1	Introduction to XPS + platform building and basic I/O	
	Session 2,3	Software Implementation of algorithm + performance measurement	
Part 2	Session 4-11	 Dataflow graph of algorithm Unscheduled implementation of operators Scheduling of operators Datapath with scheduled operators FSL-interface design Integration of coprocessor into platform Driver implementation Performance measurement 	

Many students got lost in part 2 due to

- lack of overview, unstructured working style
- lack of basic knowledge, in particular in VHDL

Lab assignment (new)

Admission requires entry test in C and VHDL

Part 1	Session 1	XPS Tutorial (Platform building + basic I/O)	
	Session 2	Software impl. of algorithm + performance measurement	
	Session 3	VHDL crash course (simple traffic light)	
Part 2	Session 4,5	Dataflow graph of algorithm, unscheduled implementation + datapath testbench	
	Session 6	Scheduling of operators e.g. cross product	
	Session 7	Datapath with scheduled operators, simulation	
	Session 8,9	FSL-interface design (state machine) + integration of coprocessor into platform	
	Session 10	Driver implementation + performance measurement	
Part 3	Session 11	System simulation + software enhancement (assembler)	
	Session 12	Pipelining of FSL communication	

Deliverables

- Software code, structured and with comments
- VHDL code, structured and with comments
- Demo
 - "sales presentation" of the results: speedup, FPGA area
 - verbal examination, questioning of design decisions
- Written documentation (datasheet)
 - data path documentation: IFs, structure, schedule
 - controller documentation: IFs, FSM diagram
 - SW integration documentation: FSL interface, register map
 - measurements documentation

Fraction of points

Research: embedded architectures

- Hardware/software architecture
- Many-core computing systems
- System communication
 - Bus subsystems
 - Networks-on-Chip
- Reconfigurable architectures
- Fault-tolerant architectures

Sample design (left): MPEG-4 H.264 video codec with ARM9 CPU and Xilinx Virtex5 FPGA to implement hardware accelerators

Research: design methods

- Embedded HW/SW design fundamentals, valid for any application
- Heterogeneity of students' capabilites and backgrounds
- Monitoring results by qualitative and quantitative evaluation
- Monitoring the embedded market
- Continuous improvement of syllabus, courses