
Code generation
from synchronous languages

a short survey

Nicolas Halbwachs

Verimag/CNRS
Grenoble, France

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 1 / 22



Synthesis or compilation?

Parallel description

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 2 / 22



Synthesis or compilation?

Sequential codeParallel description

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 2 / 22



Synthesis or compilation?

Multitask code

Sequential codeParallel description

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 2 / 22



Synthesis or compilation?

Distributed code

Multitask code

Sequential codeParallel description

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 2 / 22



Synchronous programming
Abstract synchronous behavior

sequence of reactions to input events:

Composition of behaviors:

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 3 / 22



Synchronous programming
Concrete behavior

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 4 / 22



Synchronous programming
Concrete behavior

δ1

∆1 ∆2

δ2

∆3

δ3

Valid abstraction as long as δi < ∆i

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 4 / 22



Synchronous data-flow

Generalized Mealy machines

~S′ = fS(~X ,~S)

~Y = fY (~X ,~S)~X

~S
f

Behaviour: (~S0, ~X0, ~Y0),(~S1, ~X1, ~Y1), . . . ,(~Sn, ~Xn, ~Yn), . . . ,

with Yn = fY (~Xn, ~Sn) and ~Sn+1 = fS(~Xn, ~Sn)

Deterministic!

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 5 / 22



Synchronous data-flow

Parallel composition:

~S′

f

~S

~X ~Y

(~S′,~Y ) = f (~X ,~S,~Z )

(~T ′,~Z ) = g(~W ,~T ,~Y )

(deterministic, provided there is
no combinational loop)

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 6 / 22



Synchronous data-flow

Parallel composition:

g
~T ′~T

~W ~Z

~S′

f

~S

~X ~Y
(~S′,~Y ) = f (~X ,~S,~Z )

(~T ′,~Z ) = g(~W ,~T ,~Y )

(deterministic, provided there is
no combinational loop)

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 6 / 22



Sequential code generation
The absence of combinational loop ensures that there exists a
sequential order (topological order)

~T ′

~Z

~Y

~S′

f

g

~T

~W

~X

~S

S = S0 ; T = T0 ;

forever do
read (X, W);
Z = gZ (W ,T ) ;

Y = fY (X ,Z ,S) ;

T = gT (W ,Y ,T ) ;

S = fS(X ,Z ,S) ;

done

Standard way of compiling Lustre and Scade

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 7 / 22



Sequential code generation
The absence of combinational loop ensures that there exists a
sequential order (topological order)

~T ′

~Z

~Y

~S′

f

g

~T

~W

~X

~S
S = S0 ; T = T0 ;

forever do
read (X, W);
Z = gZ (W ,T ) ;

Y = fY (X ,Z ,S) ;

T = gT (W ,Y ,T ) ;

S = fS(X ,Z ,S) ;

done

Standard way of compiling Lustre and Scade

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 7 / 22



Sequential code generation

What about imperative languages (Esterel, Synccharts)?

By translation into data-flow [Berry 1992, Esterel on Hardware]

/o

ba

r

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 8 / 22



Sequential code generation

What about imperative languages (Esterel, Synccharts)?

By translation into data-flow [Berry 1992, Esterel on Hardware]

o
EM

AW
b

r
AW

a

/o

ba

r

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 8 / 22



Deterministic multi-tasking (1/3)
[Scaife& Caspi, ECRTS 2004]
Periodic tasks, with different periods

Purely synchronous behavior:

The desired behavior:

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 9 / 22



Deterministic multi-tasking (1/3)
[Scaife& Caspi, ECRTS 2004]
Periodic tasks, with different periods

Purely synchronous behavior:

The desired behavior:

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 9 / 22



Deterministic multi-tasking (2/3)

Communication can be non deterministic!

Determinism can be preserved if the communication is delayed:

P

Q

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 10 / 22



Deterministic multi-tasking (2/3)

Communication can be non deterministic!
Determinism can be preserved if the communication is delayed:

P

Q

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 10 / 22



Deterministic multi-tasking (2/3)

Communication can be non deterministic!
Determinism can be preserved if the communication is delayed:

P

Q

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 10 / 22



Deterministic multi-tasking (2/3)

Communication can be non deterministic!
Determinism can be preserved if the communication is delayed:

P

Q

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 10 / 22



Deterministic multi-tasking (2/3)

Communication can be non deterministic!
Determinism can be preserved if the communication is delayed:

P

Q

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 10 / 22



Deterministic multi-tasking (3/3)
Generating correct code: One fast, high priority task, one slow,
low priority task, communicating through double-buffers

p0

q0

Q

P

Q

Fast
P

SF FSSlow

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 11 / 22



Deterministic multi-tasking (3/3)
Generating correct code: One fast, high priority task, one slow,
low priority task, communicating through double-buffers

p1
p0

q0

Q

P

Q

Fast
P

SF FSSlow

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 11 / 22



Deterministic multi-tasking (3/3)
Generating correct code: One fast, high priority task, one slow,
low priority task, communicating through double-buffers

p2
p0

q0

Q

P

Q

Fast
P

SF FSSlow

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 11 / 22



Deterministic multi-tasking (3/3)
Generating correct code: One fast, high priority task, one slow,
low priority task, communicating through double-buffers

q1

p2
p0

q0

Q

P

Q

Fast
P

SF FSSlow

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 11 / 22



Deterministic multi-tasking (3/3)
Generating correct code: One fast, high priority task, one slow,
low priority task, communicating through double-buffers

p3
q1 p0

q0

Q

P

Q

Fast
P

SF FSSlow

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 11 / 22



Deterministic multi-tasking (3/3)
Generating correct code: One fast, high priority task, one slow,
low priority task, communicating through double-buffers

q1
p3

p3
q1

Q

P

Q

Fast
P

SF FSSlow

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 11 / 22



Deterministic multi-tasking (3/3)
Generating correct code: One fast, high priority task, one slow,
low priority task, communicating through double-buffers

p4q1
p3q1

Q

P

Q

Fast
P

SF FSSlow

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 11 / 22



Generation of distributed code
for fault-tolerance (redundancy)
to improve the performances (??)
because of physical constraints
(position of sensors and actuators)

Solutions preserving functional semantics

Implementation of Lustre on top of TTA
[Caspi-Curic-Maignan-Sofronis-Tripakis-Niebert, LCTES03]
Distributing sequential code
[Caspi-Girault-Pilaud, TSE 1999]
Deterministic desynchronization using “endochrony”
[Benveniste-Caillaud-LeGuernic, CONCUR 1999]
[Potop-DeSimone-Sorel, EMSOFT 2007]

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 12 / 22



Generation of distributed code
for fault-tolerance (redundancy)
to improve the performances (??)
because of physical constraints
(position of sensors and actuators)

Solutions preserving functional semantics

Implementation of Lustre on top of TTA
[Caspi-Curic-Maignan-Sofronis-Tripakis-Niebert, LCTES03]
Distributing sequential code
[Caspi-Girault-Pilaud, TSE 1999]
Deterministic desynchronization using “endochrony”
[Benveniste-Caillaud-LeGuernic, CONCUR 1999]
[Potop-DeSimone-Sorel, EMSOFT 2007]

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 12 / 22



Distributing sequential code
[Caspi-Girault-Pilaud, TSE 1999]
Starting point:

the sequential code compiled from a synchronous program
An (abstract) architecture, made of n sites (processors),
communicating pointwise through FIFOs
An assignment of variables to sites

Result: The code for each site
Correctness: The distributed code is functionally equivalent to
the centralized automaton

The distribution algorithm:
(1) code replication and pruning
(2) insertion of communications
(3) insertion of synchronizations

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 13 / 22



Distributing sequential code
[Caspi-Girault-Pilaud, TSE 1999]
Starting point:

the sequential code compiled from a synchronous program
An (abstract) architecture, made of n sites (processors),
communicating pointwise through FIFOs
An assignment of variables to sites

Result: The code for each site
Correctness: The distributed code is functionally equivalent to
the centralized automaton
The distribution algorithm:

(1) code replication and pruning
(2) insertion of communications
(3) insertion of synchronizations

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 13 / 22



Distributing sequential code - Principles

X1 = . . .

· · ·
X2 = . . .

· · ·
if (X1) {
· · ·
Y1 = F(X2);

}

Initial code, with assignment of variables to sites

(X1, Y1 computed on site 1, Y2 on site 2)

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 14 / 22



Distributing sequential code - Principles

X1 = . . .

· · ·
X2 = . . .

· · ·
if (X1) {
· · ·
Y1 = F(X2);

}

X1 = . . .

· · ·
X2 = . . .

· · ·
if (X1) {
· · ·
Y1 = F(X2);

}

Code replication and pruning

Site 1 Site 2

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 14 / 22



Distributing sequential code - Principles

X1 = . . .

· · ·
X2 = . . .

· · ·
if (X1) {
· · ·
Y1 = F(X2);

}

X1 = . . .

· · ·
X2 = . . .

· · ·
if (X1) {
· · ·
Y1 = F(X2);

}

Code replication and pruning

Site 1 Site 2

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 14 / 22



Distributing sequential code - Principles

X1 = . . .

· · ·
if (X1) {

} }

Insert communications

Q12

Q21

· · ·

put(X1, Q12);

· · ·
X2 = . . .

· · ·
if (X1) {
get(X1, Q12);

· · ·

Y1 = F(X2);

· · ·

Site 2Site 1

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 14 / 22



Distributing sequential code - Principles

put(X2, Q21);

get(X2, Q21);

else get(X2, Q21);

X1 = . . .

· · ·
if (X1) {

} }

Insert communications

Q12

Q21

· · ·

put(X1, Q12);

· · ·
X2 = . . .

· · ·
if (X1) {
get(X1, Q12);

· · ·

Y1 = F(X2);

· · ·

Site 2Site 1

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 14 / 22



Asynch./Synch. distributed programming

The border of synchronous world

D/A
Synchronous

ProgramA/D

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 15 / 22



Asynch./Synch. distributed programming

The border of synchronous world

deterministic

D/A
Synchronous

ProgramA/D

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 15 / 22



Asynch./Synch. distributed programming

The border of synchronous world

???

deterministic

D/A
Synchronous

ProgramA/D

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 15 / 22



The border of synchronous world
Input sampling

Continuous signals

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 16 / 22



The border of synchronous world
Input sampling

Continuous signals

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 16 / 22



The border of synchronous world
Input sampling

Continuous signals

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 16 / 22



The border of synchronous world
Input sampling

Continuous signals

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 16 / 22



The border of synchronous world
Input sampling

Continuous signals

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 16 / 22



The border of synchronous world
Input sampling

Continuous signals

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 16 / 22



The border of synchronous world

Discrete signals

Input sampling

Continuous signals

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 16 / 22



The border of synchronous world

0 1 1 0 1 0
Discrete signals

Input sampling

Continuous signals

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 16 / 22



The border of synchronous world

0 1 1 0 0 0

0 1 1 0 1 0
Discrete signals

Input sampling

Continuous signals

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 16 / 22



The border of synchronous world

Control theory provides standard ways for keeping this
non-determinism under control

bounding the error on continuous signals thanks to uniform
continuity
using confirmation on Boolean signals (ignoring short
variations)

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 17 / 22



Asynch./synch. programming
[Caspi-Salem, FTRTFT 2000]
[Caspi-Mazuet-Reynaud, SAFECOMP 2001]
Implement a synchronous program as an asynchronous
composition of synchronous processes

S

No need to preserve the synchronous (deterministic) semantics,
as long as the overall (non-deterministic) semantics is preserved

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 18 / 22



Asynch./synch. programming
[Caspi-Salem, FTRTFT 2000]
[Caspi-Mazuet-Reynaud, SAFECOMP 2001]
Implement a synchronous program as an asynchronous
composition of synchronous processes

S1 S2

S3 S4
S5

S

No need to preserve the synchronous (deterministic) semantics,
as long as the overall (non-deterministic) semantics is preserved

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 18 / 22



Asynch./synch. programming (1/3)

Asynchronous/synchronous distribution: Asynchronous
composition of synchronous processes.
Each process has its own clock, and samples the outputs of
other processes.

the same output is sampled twice→ duplication
an output is not sampled→ data loss

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 19 / 22



Asynch./synch. programming (1/3)

Asynchronous/synchronous distribution: Asynchronous
composition of synchronous processes.
Each process has its own clock, and samples the outputs of
other processes.

the same output is sampled twice→ duplication
an output is not sampled→ data loss

x0

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 19 / 22



Asynch./synch. programming (1/3)

Asynchronous/synchronous distribution: Asynchronous
composition of synchronous processes.
Each process has its own clock, and samples the outputs of
other processes.

the same output is sampled twice→ duplication
an output is not sampled→ data loss

x0

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 19 / 22



Asynch./synch. programming (1/3)

Asynchronous/synchronous distribution: Asynchronous
composition of synchronous processes.
Each process has its own clock, and samples the outputs of
other processes.

the same output is sampled twice→ duplication
an output is not sampled→ data loss

x0x0

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 19 / 22



Asynch./synch. programming (1/3)

Asynchronous/synchronous distribution: Asynchronous
composition of synchronous processes.
Each process has its own clock, and samples the outputs of
other processes.

the same output is sampled twice→ duplication
an output is not sampled→ data loss

x0

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 19 / 22



Asynch./synch. programming (1/3)

Asynchronous/synchronous distribution: Asynchronous
composition of synchronous processes.
Each process has its own clock, and samples the outputs of
other processes.

the same output is sampled twice→ duplication
an output is not sampled→ data loss

x1

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 19 / 22



Asynch./synch. programming (1/3)

Asynchronous/synchronous distribution: Asynchronous
composition of synchronous processes.
Each process has its own clock, and samples the outputs of
other processes.

the same output is sampled twice→ duplication
an output is not sampled→ data loss

x1x1

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 19 / 22



Asynch./synch. programming (1/3)

Asynchronous/synchronous distribution: Asynchronous
composition of synchronous processes.
Each process has its own clock, and samples the outputs of
other processes.

the same output is sampled twice→ duplication
an output is not sampled→ data loss

x1

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 19 / 22



Asynch./synch. programming (1/3)

Asynchronous/synchronous distribution: Asynchronous
composition of synchronous processes.
Each process has its own clock, and samples the outputs of
other processes.

the same output is sampled twice→ duplication
an output is not sampled→ data loss

x1x1

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 19 / 22



Asynch./synch. programming (1/3)

Asynchronous/synchronous distribution: Asynchronous
composition of synchronous processes.
Each process has its own clock, and samples the outputs of
other processes.

the same output is sampled twice→ duplication
an output is not sampled→ data loss

x2

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 19 / 22



Asynch./synch. programming (1/3)

Asynchronous/synchronous distribution: Asynchronous
composition of synchronous processes.
Each process has its own clock, and samples the outputs of
other processes.

the same output is sampled twice→ duplication
an output is not sampled→ data loss

x2

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 19 / 22



Asynch./synch. programming (1/3)

Asynchronous/synchronous distribution: Asynchronous
composition of synchronous processes.
Each process has its own clock, and samples the outputs of
other processes.

the same output is sampled twice→ duplication
an output is not sampled→ data loss

x3

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 19 / 22



Asynch./synch. programming (1/3)

Asynchronous/synchronous distribution: Asynchronous
composition of synchronous processes.
Each process has its own clock, and samples the outputs of
other processes.

the same output is sampled twice→ duplication
an output is not sampled→ data loss

x3

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 19 / 22



Asynch./synch. programming (1/3)

Asynchronous/synchronous distribution: Asynchronous
composition of synchronous processes.
Each process has its own clock, and samples the outputs of
other processes.

the same output is sampled twice→ duplication
an output is not sampled→ data loss

x3x3

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 19 / 22



Asynch./synch. programming (2/3)

A special, very common case: Quasi-synchrony

All processes assumed to share the same clock. But, without
clock synchronization, clocks may have some drift.

Quasi-synchrony assumption: for any pair (c1,c2) of clocks,
between 2 ticks of c1 there are at most 2 ticks of c2
and conversely

c1

c2

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 20 / 22



Asynch./synch. programming (3/3)

Quasi-synchrony (cont)

c1

c2

at most one data lost in a row
at most one data duplicated in a row

Consequences:
a data sent twice is surely transmitted
be sensitive to data change rather than data read

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 21 / 22



Conclusion

What shall we do
now that Paul Caspi is retired ??

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 22 / 22



Conclusion

What shall we do
now that Paul Caspi is retired ??

N. Halbwachs (Verimag/CNRS) Code generation from synchronous languages 22 / 22


