From Streaming Models to Hardware and Software Implementations

Kaushik Ravindran and Hugo Andrade National Instruments Corporation, Berkeley, CA, USA

> Workshop on Software Synthesis October 14, 2011

National Instruments: What We Do

<text><text><image><image>

Used By Engineers and Scientists for Test, Design and

Virtual Instrumentation

LabVIEW: Graphical System Design

High-Level Design Models

Graphical Programming

Outline

- DSP Designer framework
- Models, analysis, and exploration
- Deployment challenges
- Summary

Motivation

Streaming Model of the OFDM Transmitter

- Nu = {72, 180, 300, 600, 900, 1200}
 - Initialization time Bandwidth
- CP mode = {'Normal', 'Extended'}
 - Run time
 - To overcome Inter-symbol-interference
 - Can be applied at symbol boundary
- CP Vector
 - Vector elements must be applied at symbol boundary
 - Vector selection based on CP mode

DSP Designer

- Development environment for creating streaming highperformance RF and DSP applications for FPGA targets
- Driving applications
 - Spectral analysis, signal intelligence, software radios
- Platforms
 - Heterogeneous FPGA platforms (R-series, FlexRIO)
- Target users
 - RF and DSP domain experts

Modeling System-Level Designs

New modeling constructs

- Systems
- Targets

Calculated Schedule View

Value of DSP Designer

RF Design Flow

Outline

- DSP Designer framework
- Models, analysis, and exploration
- Deployment challenges
- Directions ahead

DSP Designer Focus Areas

- DSP Diagram model of computation
- Analysis and optimization back end
- Performance models and timing library
- Actor definition
- IP modeling and integration
- Simulation and verification
- Code generation and implementation

MoCs for Streaming Applications

Key trade-off: Analyzability vs. Expressibility

[1] Edward A. Lee, "Concurrent Models of Computation for Heterogeneous Software", EECS 290, 2004.

[2] Stephen Edwards, "SHIM: A Deterministic Model for Heterogeneous Embedded Systems", UCB EECS Seminar, 2006. 19

Analysis and Optimization Features

- Core dataflow optimizations
 - Model validation (deadlock and unboundedness detection)
 - Throughput and latency computation
 - Buffer size optimization (under throughput constraints)
 - Schedule computation
- Hardware specific optimizations
 - Resource constrained schedule computation
 - Retiming and fusion
 - Rate matching
 - IP interface synthesis

Model Validation

Analysis determines at compile time that this application executes in bounded memory and is deadlock free

Buffer Size Optimization

Example SDF Graph

Repetitions vector: (3, 2, 1)

Problem Assumptions

- Execution times: (A,1), (B,2), (C,2)
- No resource constraints

Pareto Space of Throughput and Buffer Sizes

Exploration results in a Pareto space of throughput and buffer sizes

[1] S. Stuijk, M.C.W. Geilen and T. Basten, "Exploring Trade-Offs in Buffer Requirements and Throughput Constraints for Synchronous Dataflow Graphs", DAC 2006

Resource Constrained Scheduling

FPGA Based Soft Multiprocessor Systems

- Designer customizes multiprocessor architecture
 - Number of processors
 - Interconnection network
 - Custom co-processors
- Advantages
 - FPGA becomes accessible to software developers
 - Software compilation faster than hardware synthesis

Architecture Building Blocks for Xilinx FPGAs

Multiprocessor Configuration

Designing Soft Multiprocessor Systems on FPGAs

- Modern FPGAs provide the capacity to build a variety of micro-architectures
 - 50 processors growing with Moore's law
 - Complex memory hierarchy
 - Heterogeneous interconnection schemes
 - Custom co-processors for critical operations

Given a target application(s): What is the best multiprocessor microarchitecture on the FPGA?

Optimization Toolbox

Outline

- DSP Designer framework
- Models, analysis, and exploration
- Deployment challenges
- Directions ahead

IP Integration

Streaming Model of the OFDMA Transmitter

<u>Design Challenge</u>: Generate a viable implementation of the OFDMA transmitter on a Xilinx Virtex-5 FPGA that meets correctness and performance requirements

Timing Models for IP Blocks

- <u>Execution time</u>: time to complete one firing, i.e. read 2 samples and produce 3 samples
- <u>Initiation interval</u>: minimum time between start of successive firings

[1] Xilinx Inc., Datasheet for CoreGen Resampler block.

~ Filter Specification		
Filter Type :	Interpolation	
Rate Change Type :	Fixed Fractional	
Interpolation Rate Value :	3	Range: 3512
Decimation Rate Value :	2	Range: 22
Zero Pack Factor :	1	Range: 11
Number of Channels :	1	Range: 164
Hardware Oversampling Specification		
Select format :	Sample Pe	riod
Input Sampling Frequency :	0.001	Range: 0.000001275.0 MHz
Clock Frequency :	300.0	Range: 0.002550.0 MHz
Input Sample Period :	4	Range: 2.,10000000 Clock cycles

Example: Source-Resampler System

S outputs 1 sample every 2 cycles

R reads 3 inputs samples in consecutive cycles and outputs 2 samples in the 2nd and 3rd cycles

<u>Objective</u>: Create a valid composition of these blocks so that behavior and timing constraints are respected

Source-Resampler: Interface Signals

Connecting v_s output of Source to u_r input of Resampler results in an invalid composition

Source-Resampler: System Implementation

<u>Glue design problem</u>: Given a set of actors, synthesize a glue (buffers and controllers), such that the resulting system satisfies correctness and performance properties

Solutions to the Glue Design Problem

- Solutions at the HDL and FSM level
 - Suffer state space explosion problem
 - Infeasible for most practical systems
- Solutions based on abstract models
 - Enable efficient static analysis
 - Support automated synthesis
- But important to choose the right abstractions that yield <u>correct</u> and <u>non-defensive</u> implementations

Source-Resampler: Static Dataflow Model

Self-timed schedule to achieve optimal throughput

(requires buffer of size 5)

Limitations of the SDF model:

- Does not capture how tokens are accessed
- Analysis conservatively allocates space for tokens from firings of S that occur while R executes
- Resulting implementation is <u>defensive</u>

[1] E. A. Lee and D. Messerschmitt, "Synchronous Dataflow", in Proc. of the IEEE, 75(9), 1987.
[2] S. Stuijk, M.C.W. Geilen and T. Basten, "Exploring Trade-Offs in Buffer Requirements and Throughput Constraints for Synchronous Dataflow Graphs", DAC 2006

Cyclo-Static Dataflow Model

Self-timed schedule to achieve optimal throughput

(requires buffer of size 1)

Limitations of the CSDF model:

- Does not capture requirement that Resampler IP must receive 3 tokens in consecutive cycles
- Analysis underestimates space needed for the buffer
- Resulting implementation is incorrect

Static Dataflow Model with Access Patterns

Strengths of the SDF-AP model:

- Explicitly specifies how tokens are consumed and produced in time
- Analysis yields a buffer of size 2
- Resulting implementation is <u>correct</u> and <u>non-defensive</u>

Access Pattern Example

Case Study: OFDMA Transmitter

Glue design using SDF-AP models

•

- Improves buffer sizes compared to SDF
- Results in a non-defensive controller implementation

Outline

- DSP Designer framework
- Models, analysis, and exploration
- Deployment challenges
- Directions ahead

Directions Ahead

- Model and analysis extensions
 - Efficient methods to check correctness and non-defensiveness
 - Automatic characterization of access patterns
 - Formalize relation between abstract and concrete models
- Specification for control and timing with dataflow
 - Scenario aware, heterochronous, core-functional dataflow
 - Parameterized models
- Other hardware specific problems
 - Behavioral interface formalisms (IP-XACT)
 - IP interface standardization

Y-Chart: A Disciplined System Design Methodology

An Open API and Software Stack

- Create products for new problem spaces
- Leverage common infrastructure across products
- Scale implementations across platforms desktop OSs to web
- Improve developer efficiency in creating products
- Expect infrastructure to external partners to create products

Web LabVIEW Development Process

