
From Streaming Models to Hardware
and Software Implementations

Kaushik Ravindran and Hugo Andrade

National Instruments Corporation, Berkeley, CA, USA

Workshop on Software Synthesis

October 14, 2011

National Instruments: What We Do

Low-Cost Modular
Measurement and
Control Hardware

Productive
Software

Development Tools

Highly Integrated
Systems Platforms

Used By Engineers and Scientists for Test, Design and
Control

2

Virtual Instrumentation

High-Speed
Digitizers

High-Resolution
Digitizers and DMMs

Multifunction
Data Acquisition

Dynamic
Signal Acquisition

Digital I/O

Instrument
Control

Counter/
Timers

Machine
Vision

Motion
Control

Distributed I/O and
Embedded Control

Laptop PC PDA Desktop PC PXI Modular Instrumentation

Keypad

LCD

Sound

Acoustics

RF
Signal

Battery

Body & Chassis Audio
Engine

Durability

Tire & Brake Safety
Emissions Electronics

Temperature

Monitoring
Waste Monitoring

Process Control

Motor and Valve Control

3

LabVIEW: Graphical System Design
High-Level Design Models

Embedded Platform Desktop Platform

Real-Time FPGA MPU

Simulation Configuration Statechart Textual Math

LabVIEW
Graphical Programming

Linux Macintosh Windows

Dataflow

4

LabVIEW Targets
• Scalable from distributed network to

sensors

Portable

FPGA

PC

Handheld

Industrial Controllers (PXI)

Sensor

Vision System

DSP/MPU

Embedded Controllers

http://images.google.com/imgres?imgurl=www.pjrc.com/store/xcs10xl_plcc.jpg&imgrefurl=http://www.pjrc.com/store/xcs10xl_plcc.html&h=472&w=476&prev=/images?q=xilinx+fpga&start=40&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8&safe=off&sa=N

Outline

• DSP Designer framework

• Models, analysis, and exploration

• Deployment challenges

• Summary

6

Motivation

Application trends

• 1000’s of parallel tasks

• Large node/channel counts

• High performance requirements

• E.g. streaming DSP applications

Platform trends

• 100’s of processing elements

• Heterogeneous processors and memories

• Distributed I/O

• E.g. Heterogeneous FPGA targets

Concurrent Application

Parallel Platform

7

Streaming Model of the OFDM Transmitter

• Nt = {1,2,4}
– Compile time - # transmitters

• Nu = {72, 180, 300, 600, 900, 1200}
– Initialization time - Bandwidth

• CP mode = ,‘Normal’, ‘Extended’-
– Run time
– To overcome Inter-symbol-interference
– Can be applied at symbol boundary

• CP Vector
– Vector elements must be applied at symbol

boundary
– Vector selection based on CP mode

Challenge: How to express a domain expert’s
algorithm specification in a model that is viable for

analysis and implementation?

8

DSP Designer

• Development environment for creating streaming high-
performance RF and DSP applications for FPGA targets

• Driving applications

– Spectral analysis, signal intelligence, software radios

• Platforms

– Heterogeneous FPGA platforms (R-series, FlexRIO)

• Target users

– RF and DSP domain experts

 9

Modeling System-Level Designs

New modeling constructs
• Systems
• Targets
• Mixed model diagrams
• Asynchronous Wires

G Dataflow with

Asynchronous Data

Connection

Static Data Flow

MoC

Inter-Target

Asynchronous Data

Connections

10

LabVIEW DSP Designer

11

LabVIEW DSP Designer

LabVIEW VIs Xilinx CoreGen Blocks
Data Ports

12

LabVIEW DSP Designer

Auto buffer sizing to
minimize resources

Calculated firing counts
and timing data

Throughput
constraints

13

LabVIEW DSP Designer

Calculated Schedule View

14

Value of DSP Designer

15

PCIe Transfer
Xilinx FPGA

RF Design Flow

Peer-to-Peer
Streaming

RIO Target

FlexRIO FAM

LabVIEW FPGA

LabVIEW DSP Designer

Host

16

Outline

• DSP Designer framework

• Models, analysis, and exploration

• Deployment challenges

• Directions ahead

17

DSP Designer Focus Areas

• DSP Diagram model of computation

• Analysis and optimization back end

• Performance models and timing library

• Actor definition

• IP modeling and integration

• Simulation and verification

• Code generation and implementation 18

MoCs for Streaming Applications

Expressive Analyzable

Process
Networks

Kahn Process
Networks

Boolean
Dataflow

Static Dataflow

Cyclo-static
Dataflow

Homogeneous
Dataflow

SHIM

Integer
Dataflow

Heterochronous
Dataflow

No Yes
Deadlock and boundedness
decidable?

No Yes Static scheduling?

Deter-
ministic?

No Yes

*1+ Edward A. Lee, “Concurrent Models of Computation for Heterogeneous Software”, EECS 290, 2004.
*2+ Stephen Edwards, “SHIM: A Deterministic Model for Heterogeneous Embedded Systems”, UCB EECS Seminar, 2006.

Bounded data
rates?

No Yes

Key trade-off: Analyzability vs. Expressibility

Parameterized
Dataflow

Area of focus for DSP Designer

19

Analysis and Optimization Features

• Core dataflow optimizations

– Model validation (deadlock and unboundedness detection)

– Throughput and latency computation

– Buffer size optimization (under throughput constraints)

– Schedule computation

• Hardware specific optimizations

– Resource constrained schedule computation

– Retiming and fusion

– Rate matching

– IP interface synthesis

[1] S. S. Bhattacharyya, P. K. Murthy and E. A. Lee, "Software Synthesis from Dataflow
Graphs," Kluwer Academic Publishers, Norwell, Mass, 1996. 20

Model Validation

21

1 4

Source
Sum

Squares

Sum
Abs

Square
Root 1

Sink

4 1

1

1 1 1

1

1 1

1

1 4 Repetitions

Analysis determines at compile time that this application
executes in bounded memory and is deadlock free

Buffer Size Optimization

A B C
2 1 3 2

Pareto Space of Throughput and Buffer Sizes Example SDF Graph

Problem Assumptions

• Execution times: (A,1), (B,2), (C,2)

• No resource constraints

Repetitions vector: (3, 2, 1)

Exploration results in a Pareto space of throughput and buffer sizes

[1] S. Stuijk, M.C.W. Geilen and T. Basten, “Exploring Trade-Offs in Buffer Requirements
and Throughput Constraints for Synchronous Dataflow Graphs”, DAC 2006

22

Resource Constrained Scheduling

23

x x x x +

x x

-

-

+ <

x

x

x

x

+

x

x

-

- +

<

cycle 1

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

Application Model Micro-Architecture Model

Resource Constrained Schedule

Direct implementation:
Resources: 6 (*), 2 (+), 2 (-), 1 (<)
Latency: 4 cycles
Throughput: 1 sample / 1 cycle

Constrained implementation:
Resources: 1 (*), 1 (+), 1 (-), 1 (<)
Latency: 7 cycles
Throughput: 1 sample / 7 cycles

x + - <

Ref: C-T. Hwang, J-H. Lee, Y-C. Hsu, “A Formal
Approach to the Scheduling Problem in High Level
Synthesis”, IEEE Trans. On CAD, Vol 10, No 4, Apr 1991.

FPGA Based Soft Multiprocessor Systems

• Designer customizes
multiprocessor architecture

– Number of processors

– Interconnection network

– Custom co-processors

• Advantages

– FPGA becomes accessible
to software developers

– Software compilation
faster than hardware
synthesis

Processing
Element

Co-Processor

Memory

Architecture Building Blocks for Xilinx FPGAs

Bus Queue

PowerPC
(hard)

MicroBlaze
(soft)

FSL

OPB

PLB

Hardware
acceleration

Ethernet Off-chip SDRAM

On-chip BRAM

PE Co-PE PE Co-PE

MEM MEM

MEM PE Co-PE

MEM

PERIPHERAL MEM

Xilinx Virtex-5 family of
FPGAs

Multiprocessor Configuration

MicroBlaze /
ARM

On-chip BRAM / Off-
chip SDRAM

FSL OPB / PLB

24

Designing Soft Multiprocessor Systems on FPGAs

• Modern FPGAs provide the
capacity to build a variety of
micro-architectures

– 50 processors – growing with
Moore’s law

– Complex memory hierarchy

– Heterogeneous
interconnection schemes

– Custom co-processors for
critical operations

Given a target application(s):
What is the best multiprocessor micro-

architecture on the FPGA?

Software
compilation

FPGA

Application
description

G

Hardware
abstraction

Soft multiprocessor design approach

Soft multiprocessor

OR OR

DSPD C

25

Optimization Toolbox

P1 P2

P3 P4

a

b

c

1

1

1

1 1

Toolbox of
optimization methods

Implementation and
Performance Analysis

 Heuristic list
scheduling

 Graph partitioning
 Integer linear

programming
 Constraint

programming
 Simulated

annealing

26

Application model
(with cost annotations)

Platform model

Application and
platform constraints

Outline

• DSP Designer framework

• Models, analysis, and exploration

• Deployment challenges

• Directions ahead

27

IP Integration

User HDL Hardware IP

Design Challenge: Generate a viable implementation of the OFDMA transmitter
on a Xilinx Virtex-5 FPGA that meets correctness and performance requirements

I/O with throughput requirements

Streaming Model of the OFDMA Transmitter

28

Timing Models for IP Blocks

Xilinx
Resampler 2 3

Rational Resampler

Execution time: 20
Initiation interval: 8

et=20

ii=8

• Execution time: time to complete one
firing, i.e. read 2 samples and produce
3 samples

• Initiation interval: minimum time
between start of successive firings

[1] Xilinx Inc., Datasheet for CoreGen Resampler block.
29

Example: Source-Resampler System

S outputs 1 sample every 2 cycles R reads 3 inputs samples in consecutive cycles
and outputs 2 samples in the 2nd and 3rd cycles

Objective: Create a valid composition of these blocks so
that behavior and timing constraints are respected

30

Source-Resampler: Interface Signals

FSM models for S and R

Connecting vs output of Source to ur input of
Resampler results in an invalid composition

31

Source-Resampler: System Implementation

Glue design problem: Given a set of actors, synthesize a glue (buffers and controllers),
such that the resulting system satisfies correctness and performance properties

GLUE

Optimal throughput:
2 samples / 6 cycles

Optimal buffer size: 2

32

Solutions to the Glue Design Problem

• Solutions at the HDL and FSM level

– Suffer state space explosion problem

– Infeasible for most practical systems

• Solutions based on abstract models

– Enable efficient static analysis

– Support automated synthesis

• But important to choose the right abstractions that yield
correct and non-defensive implementations

33

Source-Resampler: Static Dataflow Model

Self-timed schedule to achieve optimal throughput
(requires buffer of size 5)

*1+ E. A. Lee and D. Messerschmitt, “Synchronous Dataflow”, in Proc. of the IEEE, 75(9), 1987.
[2] S. Stuijk, M.C.W. Geilen and T. Basten, “Exploring Trade-Offs in Buffer Requirements and
Throughput Constraints for Synchronous Dataflow Graphs”, DAC 2006

Limitations of the SDF model:

• Does not capture how tokens are accessed

• Analysis conservatively allocates space for tokens from firings of S that occur while R executes

• Resulting implementation is defensive

34

Cyclo-Static Dataflow Model

Self-timed schedule to achieve optimal throughput
(requires buffer of size 1)

Limitations of the CSDF model:

• Does not capture requirement that Resampler IP must receive 3 tokens in consecutive cycles

• Analysis underestimates space needed for the buffer

• Resulting implementation is incorrect

35

Static Dataflow Model with Access Patterns

Self-timed schedule to achieve optimal throughput
(requires buffer of size 2)

Strengths of the SDF-AP model:

• Explicitly specifies how tokens are consumed and produced in time

• Analysis yields a buffer of size 2

• Resulting implementation is correct and non-defensive

36

production pattern
over execution time

consumption pattern
over execution time

1 3 2

Access Pattern Example

37

3 2

time

[1,0,1,0,1,0,0,0] [0,0,0,1,0,0,0,1]
ex. 8

consume

produce

execute

time

action 1 2 1

ET

 0 1 2 3 4 5 6 7 8

R

2 3 1

Case Study: OFDMA Transmitter

• Glue design using SDF-AP models

– Improves buffer sizes compared to SDF

– Results in a non-defensive controller implementation

ex. 2048 ex. 7838 ex. 144 ex. 192

[1300060013000848] [12048] [(100000)24] [(000001)23001001]

600 1 2133 2 25 SDF-AP

600 2048 2133 56 25 SDF

Sizes

25 MS/s

38

Outline

• DSP Designer framework

• Models, analysis, and exploration

• Deployment challenges

• Directions ahead

39

Directions Ahead

• Model and analysis extensions

– Efficient methods to check correctness and non-defensiveness

– Automatic characterization of access patterns

– Formalize relation between abstract and concrete models

• Specification for control and timing with dataflow

– Scenario aware, heterochronous, core-functional dataflow

– Parameterized models

• Other hardware specific problems

– Behavioral interface formalisms (IP-XACT)

– IP interface standardization

40

Y-Chart: A Disciplined System Design Methodology

41

Application Model (and Constraints) Platform Model (and Constraints)

Analysis and Mapping

Performance Evaluation

Deployment

[1] B. Kienhuis, E. F. Deprettere, P. Wolf, K. A.
Vissers. “A Methodology to Design
Programmable Embedded Systems - The Y-Chart
Approach”. SAMOS, p.18-37, Jan 2002.

[2] K. Keutzer, A. R. Newton, J. Rabaey, and A.
Sangiovanni-Vincentelli. System-level design:
Orthogonalization of Concerns and Platform-
based Design. IEEE Trans. on CAD of ICs, 19(12):
p.1523-1543, December 2000.

Representative
formal models

Efficient analysis
and optimization

Fast and accurate
simulation

Reliable
verification

41

An Open API and Software Stack

• Create products for new problem spaces

• Leverage common infrastructure across products

• Scale implementations across platforms – desktop OSs to web

• Improve developer efficiency in creating products

• Expect infrastructure to external partners to create products

Platform SDK

WPF/Silverlight

Diagram SDK Controls SDK

DSP Diagram Environment

Project

DSP Designer

42

Web LabVIEW Development Process

1

2

3

Develop the thin client using Web LabVIEW on ni.com

Deploy the thin client
to the Real-Time
device

Run the thin client by navigating to it in a
browser

NI.COM

43

