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National Instruments: What We Do 

Low-Cost Modular 
Measurement and 
Control Hardware 

Productive 
Software 

Development Tools 

Highly Integrated 
Systems Platforms 

Used By Engineers and Scientists for Test, Design and 
Control 
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Virtual Instrumentation 

High-Speed 
Digitizers 

High-Resolution 
Digitizers and DMMs 

Multifunction  
Data Acquisition 

Dynamic 
Signal Acquisition 

Digital I/O 

Instrument 
Control 

Counter/ 
Timers 

Machine 
Vision 

Motion  
Control 

Distributed I/O and 
Embedded Control 

Laptop PC PDA Desktop PC PXI Modular Instrumentation 

Keypad 

LCD 

Sound 

Acoustics 

RF 
Signal 

Battery 

Body & Chassis Audio 
Engine 

Durability 

Tire & Brake Safety 
Emissions Electronics 

Temperature 

Monitoring 
Waste Monitoring 

Process Control 

Motor and Valve Control 
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LabVIEW: Graphical System Design 
High-Level Design Models 

Embedded Platform Desktop Platform 

Real-Time FPGA MPU 

Simulation Configuration Statechart Textual Math 

LabVIEW 
Graphical Programming 

Linux Macintosh Windows 

Dataflow 
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LabVIEW Targets  
• Scalable from distributed network to 

sensors 

Portable 

FPGA 

PC 

Handheld  

Industrial Controllers (PXI) 

Sensor 

Vision System 

DSP/MPU 

Embedded Controllers 

http://images.google.com/imgres?imgurl=www.pjrc.com/store/xcs10xl_plcc.jpg&imgrefurl=http://www.pjrc.com/store/xcs10xl_plcc.html&h=472&w=476&prev=/images?q=xilinx+fpga&start=40&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8&safe=off&sa=N


Outline 

• DSP Designer framework 

 

• Models, analysis, and exploration 

 

• Deployment challenges 

 

• Summary 
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Motivation 

Application trends 

• 1000’s of parallel tasks 

• Large node/channel counts 

• High performance requirements 

• E.g. streaming DSP applications 

Platform trends 

• 100’s of processing elements 

• Heterogeneous processors and memories 

• Distributed I/O 

• E.g. Heterogeneous FPGA targets 

Concurrent Application 

Parallel Platform 
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Streaming Model of the OFDM Transmitter 

• Nt = {1,2,4} 
– Compile time - # transmitters 

• Nu = {72, 180, 300, 600, 900, 1200} 
– Initialization time - Bandwidth 

• CP mode = ,‘Normal’, ‘Extended’- 
– Run time 
– To overcome Inter-symbol-interference 
– Can be applied at symbol boundary 

• CP Vector 
– Vector elements must be applied at symbol 

boundary 
– Vector  selection based on CP mode 

Challenge: How to express a domain expert’s 
algorithm specification in a model that is viable for 

analysis and implementation? 
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DSP Designer 

• Development environment for creating streaming high-
performance RF and DSP applications for FPGA targets 

 

• Driving applications 

– Spectral analysis, signal intelligence, software radios 

 

• Platforms 

– Heterogeneous FPGA platforms (R-series, FlexRIO) 

 

• Target users 

– RF and DSP domain experts 
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Modeling System-Level Designs 

New modeling constructs 
• Systems 
• Targets 
• Mixed model diagrams 
• Asynchronous Wires 

 

G Dataflow with 

Asynchronous Data 

Connection 

Static Data Flow 

MoC  

Inter-Target 

Asynchronous Data 

Connections 
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LabVIEW DSP Designer 

11 



LabVIEW DSP Designer 

LabVIEW VIs Xilinx CoreGen Blocks 
Data Ports 
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LabVIEW DSP Designer 

Auto buffer sizing to 
minimize resources 

Calculated firing counts 
and timing data 

Throughput 
constraints 
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LabVIEW DSP Designer 

Calculated Schedule View 
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Value of DSP Designer 
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PCIe Transfer 
Xilinx FPGA 

RF Design Flow 

Peer-to-Peer 
Streaming 

RIO Target 

FlexRIO FAM 

LabVIEW FPGA 

LabVIEW DSP Designer 

Host 
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Outline 

• DSP Designer framework 

 

• Models, analysis, and exploration 

 

• Deployment challenges 

 

• Directions ahead 
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DSP Designer Focus Areas 

• DSP Diagram model of computation 

 

• Analysis and optimization back end 

 

• Performance models and timing library 

 

• Actor definition 

 

• IP modeling and integration 

 

• Simulation and verification 

 

• Code generation and implementation  18 



MoCs for Streaming Applications 

Expressive Analyzable 

Process 
Networks 

Kahn Process 
Networks 

Boolean 
Dataflow 

Static Dataflow 

Cyclo-static  
Dataflow 

Homogeneous  
Dataflow 

SHIM 

Integer 
Dataflow 

Heterochronous  
Dataflow 

No Yes 
Deadlock and boundedness 
decidable? 

No Yes Static scheduling? 

Deter- 
ministic? 

No Yes 

*1+ Edward A. Lee, “Concurrent Models of Computation for Heterogeneous Software”, EECS 290, 2004.  
*2+ Stephen Edwards, “SHIM: A Deterministic Model for Heterogeneous Embedded Systems”, UCB EECS Seminar, 2006.   

Bounded data 
rates? 

No Yes 

Key trade-off: Analyzability vs. Expressibility 

Parameterized 
Dataflow 

Area of focus for DSP Designer 
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Analysis and Optimization Features 

• Core dataflow optimizations 

– Model validation (deadlock and unboundedness detection) 

– Throughput and latency computation 

– Buffer size optimization (under throughput constraints) 

– Schedule computation 

 

• Hardware specific optimizations 

– Resource constrained schedule computation 

– Retiming and fusion 

– Rate matching 

– IP interface synthesis 

 

 
[1] S. S. Bhattacharyya, P. K. Murthy and E. A. Lee, "Software Synthesis from Dataflow 
Graphs," Kluwer Academic Publishers, Norwell, Mass, 1996.  20 



Model Validation 
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Square 
Root 1 
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1 

1 1 1 

1 

1 1 

1 

1 4 Repetitions 

Analysis determines at compile time that this application 
executes in bounded memory and is deadlock free 



Buffer Size Optimization 

A B C 
2 1 3 2 

Pareto Space of Throughput and Buffer Sizes Example SDF Graph 

Problem Assumptions 

• Execution times: (A,1), (B,2), (C,2) 

• No resource constraints 

 

Repetitions vector: (3, 2, 1) 

 

Exploration results in a Pareto space of throughput and buffer sizes 

[1] S. Stuijk, M.C.W. Geilen and T. Basten, “Exploring Trade-Offs in Buffer Requirements 
and Throughput Constraints for Synchronous Dataflow Graphs”, DAC 2006 
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Resource Constrained Scheduling 
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Application Model Micro-Architecture Model 
 

Resource Constrained Schedule 

Direct implementation: 
Resources: 6 (*), 2 (+), 2 (-), 1 (<) 
Latency: 4 cycles 
Throughput: 1 sample / 1 cycle 

Constrained implementation: 
Resources: 1 (*), 1 (+), 1 (-), 1 (<) 
Latency: 7 cycles 
Throughput: 1 sample / 7 cycles 

x + - < 

Ref: C-T. Hwang, J-H. Lee, Y-C. Hsu, “A Formal 
Approach to the Scheduling Problem in High Level 
Synthesis”, IEEE Trans. On CAD, Vol 10, No 4, Apr 1991.   



FPGA Based Soft Multiprocessor Systems 

• Designer customizes 
multiprocessor architecture 

– Number of processors 

– Interconnection network 

– Custom co-processors 

 

• Advantages 

– FPGA becomes accessible 
to software developers 

– Software compilation 
faster than hardware 
synthesis 

Processing 
Element 

Co-Processor 

Memory 

Architecture Building Blocks for Xilinx FPGAs 

Bus Queue 

PowerPC 
(hard) 

MicroBlaze 
(soft) 

FSL 

OPB 

PLB 

Hardware 
acceleration 

Ethernet Off-chip SDRAM 

On-chip BRAM 

PE Co-PE PE Co-PE 

MEM MEM 

MEM PE Co-PE 

MEM 

PERIPHERAL MEM 

Xilinx Virtex-5 family of 
FPGAs 

Multiprocessor Configuration 

MicroBlaze / 
ARM 

On-chip BRAM / Off-
chip SDRAM 

FSL OPB / PLB 
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Designing Soft Multiprocessor Systems on FPGAs 

• Modern FPGAs provide the 
capacity to build a variety of 
micro-architectures 

– 50 processors – growing with 
Moore’s law 

– Complex memory hierarchy 

– Heterogeneous 
interconnection schemes 

– Custom co-processors for 
critical operations 

Given a target application(s): 
What is the best multiprocessor micro-

architecture on the FPGA? 

Software  
compilation 

FPGA 

Application 
description 

G 

Hardware 
abstraction 

Soft multiprocessor design approach 

Soft multiprocessor 

OR OR 

DSPD C 
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Optimization Toolbox 

P1 P2 

P3 P4 

a 

b 

c 

1 

1 

1 

1 1 

Toolbox of  
optimization methods 

Implementation and 
Performance Analysis 

 Heuristic list 
scheduling 

 Graph  partitioning 
 Integer linear 

programming 
 Constraint 

programming 
 Simulated 

annealing 
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Application model 
(with cost annotations) 

Platform model 

Application and 
platform constraints 



Outline 

• DSP Designer framework 

 

• Models, analysis, and exploration 

 

• Deployment challenges 

 

• Directions ahead 

27 



IP Integration 

User HDL Hardware IP 

Design Challenge: Generate a viable implementation of the OFDMA transmitter 
on a Xilinx Virtex-5 FPGA that meets correctness and performance requirements  

I/O with throughput requirements 

Streaming Model of the OFDMA Transmitter 
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Timing Models for IP Blocks 

Xilinx 
Resampler 2 3 

Rational Resampler 

Execution time: 20 
Initiation interval: 8 

et=20 

ii=8 

• Execution time: time to complete one 
firing, i.e. read 2 samples and produce 
3 samples 

 

• Initiation interval: minimum time 
between start of successive firings 

 

 

[1] Xilinx Inc.,  Datasheet for CoreGen Resampler block. 
29 



Example: Source-Resampler System 

S outputs 1 sample every 2 cycles R reads 3 inputs samples in consecutive cycles 
and outputs 2 samples in the 2nd and 3rd cycles  

Objective: Create a valid composition of these blocks so 
that behavior and timing constraints are respected 
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Source-Resampler: Interface Signals 

FSM models for S and R 

Connecting vs output of Source to ur input of 
Resampler results in an invalid composition 
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Source-Resampler: System Implementation 

Glue design problem: Given a set of actors, synthesize a glue (buffers and controllers), 
such that the resulting system satisfies correctness and performance properties 

GLUE 

Optimal throughput:  
2 samples / 6 cycles 

Optimal buffer size: 2 

32 



Solutions to the Glue Design Problem 

• Solutions at the HDL and FSM level 

– Suffer state space explosion problem 

– Infeasible for most practical systems 

 

• Solutions based on abstract models 

– Enable efficient static analysis 

– Support automated synthesis 

 

• But important to choose the right abstractions that yield 
correct and non-defensive implementations 
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Source-Resampler: Static Dataflow Model 

Self-timed schedule to achieve optimal throughput 
(requires buffer of size 5) 

*1+ E. A. Lee and D. Messerschmitt, “Synchronous Dataflow”, in Proc. of the IEEE, 75(9), 1987. 
[2] S. Stuijk, M.C.W. Geilen and T. Basten, “Exploring Trade-Offs in Buffer Requirements and 
Throughput Constraints for Synchronous Dataflow Graphs”, DAC 2006 

Limitations of the SDF model: 

• Does not capture how tokens are accessed 

• Analysis conservatively allocates space for tokens from firings of S that occur while R executes 

• Resulting implementation is defensive 
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Cyclo-Static Dataflow Model 

Self-timed schedule to achieve optimal throughput 
(requires buffer of size 1) 

Limitations of the CSDF model: 

• Does not capture requirement that Resampler IP must receive 3 tokens in consecutive cycles 

• Analysis underestimates space needed for the buffer 

• Resulting implementation is incorrect 
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Static Dataflow Model with Access Patterns 

Self-timed schedule to achieve optimal throughput 
(requires buffer of size 2) 

Strengths of the SDF-AP model: 

• Explicitly specifies how tokens are consumed and produced in time 

• Analysis yields a buffer of size 2 

• Resulting implementation is correct and non-defensive 

36 

production pattern  
over execution time 

consumption pattern  
over execution time 

1 3 2 



Access Pattern Example 
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3 2 

time 

[1,0,1,0,1,0,0,0] [0,0,0,1,0,0,0,1] 
ex. 8 

consume 

produce 

execute 

time  
 
action 1 2 1 

ET 

       0             1            2               3               4               5             6           7             8   

R 

2 3 1 



Case Study: OFDMA Transmitter 

• Glue design using SDF-AP models 

– Improves buffer sizes compared to SDF 

– Results in a non-defensive controller implementation 

ex.  2048 ex.  7838 ex.  144 ex.  192 

[1300060013000848] [12048] [(100000)24] [(000001)23001001] 

600 1 2133 2 25 SDF-AP 

600 2048 2133 56 25 SDF 

Sizes 

25 MS/s 
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Outline 

• DSP Designer framework 

 

• Models, analysis, and exploration 

 

• Deployment challenges 

 

• Directions ahead 
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Directions Ahead 

• Model and analysis extensions 

– Efficient methods to check correctness and non-defensiveness 

– Automatic characterization of access patterns 

– Formalize relation between abstract and concrete models 

 

• Specification for control and timing with dataflow 

– Scenario aware, heterochronous, core-functional dataflow 

– Parameterized models 

 

• Other hardware specific problems 

– Behavioral interface formalisms (IP-XACT) 

– IP interface standardization 
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Y-Chart: A Disciplined System Design Methodology 

41 

Application Model (and Constraints) Platform Model (and Constraints) 

Analysis and Mapping 

Performance Evaluation 

Deployment 

[1] B. Kienhuis, E. F. Deprettere, P. Wolf,  K. A. 
Vissers.  “A Methodology to Design 
Programmable Embedded Systems - The Y-Chart 
Approach”.  SAMOS, p.18-37, Jan 2002. 

[2] K. Keutzer, A. R. Newton,  J. Rabaey, and A. 
Sangiovanni-Vincentelli.  System-level design: 
Orthogonalization of Concerns and Platform-
based Design.  IEEE Trans. on  CAD of  ICs, 19(12): 
p.1523-1543, December 2000. 

Representative 
formal models 

Efficient analysis 
and optimization 

Fast and accurate 
simulation 

Reliable 
verification 
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An Open API and Software Stack 

• Create products for new problem spaces 

• Leverage common infrastructure across products  

• Scale implementations across platforms – desktop OSs to web 

• Improve developer efficiency in creating products 

• Expect infrastructure to external partners to create products 

Platform SDK 

WPF/Silverlight 

Diagram SDK Controls SDK 

DSP Diagram Environment 

Project 

DSP Designer 
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Web LabVIEW Development Process 

1 

2 

3 

Develop the thin client using Web LabVIEW on ni.com 

Deploy the thin client 
to the Real-Time 
device 

Run the thin client by navigating to it in a 
browser 

NI.COM 
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