
ZZ

Building Timing Predictable Embedded Systems

HEIKO FALK, ALAIN GIRAULT, DANIEL GRUND, NAN GUAN, BENGT JONSSON,
PETER MARWEDEL, JAN REINEKE, CHRISTINE ROCHANGE, REINHARD VON
HANXLEDEN, REINHARD WILHELM, WANG YI, Artist-Design NoE

A large class of embedded systems is distinguished from general purpose computing systems by the need
to satisfy strict requirements on timing, often under constraints on available resources. Predictable system
design is concerned with the challenge of building systems for which timing requirements can be guaranteed
a priori. Perhaps paradoxically, this problem has become more difficult by the introduction of performance-
enhancing architectural elements, such as caches, pipelines, and multithreading, which introduce a large
degree of nondeterminism and make guarantees harder to provide. The intention of this paper is to sum-
marize current state-of-the-art in research concerning how to build predictable yet performant systems.
We consider how processor architectures, and programming languages can be devised for predictability. We
also consider the integration of compilation and timing analysis, as well as strategies for predictability on
multicores.

Categories and Subject Descriptors: C.3 [Special-purpose and Application-based systems]: Real-time
and embedded systems

General Terms: Design, Performance, Reliability, Verification

Additional Key Words and Phrases: Embedded systems, predictability, worst-case execution time, resource
sharing

ACM Reference Format:
Artist-Design NoE, 2012. Building Timing Predictable Embedded Systems. ACM Trans. Embedd. Comput.
Syst. XX, YY, Article ZZ (January 2012), 28 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Embedded systems distinguish themselves from general purpose computing systems
by several characteristics, including the limited availability of resources and the re-
quirement to satisfy nonfunctional constraints, e.g., on latencies or throughput. In
several application domains, including automotive, avionics, industrial automation,
many functionalities are associated with strict requirements on deadlines for deliv-
ering results of calculations. In many cases, failure to meet deadlines may cause a
catastrophic or at least highly undesirable system failure, associated with risks for
human or economical damages.

Predictable system design is concerned with the challenge of building systems in
such a way that requirements can be guaranteed from the design. This means that
an off-line analysis should demonstrate satisfaction of timing requirements, subject
to assumptions made on operating conditions foreseen for the system [Stankovic and
Ramamritham 1990]. Devising such an analysis is a challenging problem, since tim-

This work is supported by the ArtistDesign Network of Excellence, supported by the European Commission,
grant 214373.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1539-9087/2012/01-ARTZZ $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

ZZ:2 ArtistDesign NoE

ing requirements propagate down in the system hierarchy, meaning that the analysis
must foresee timing properties of all parts of a system: processor and instruction-set
architecture, language and compiler support, software design, run-time system and
scheduling, communication infrastructure, etc. Perhaps paradoxically, this problem
has become more difficult by the trend to make processors more performant, since the
introduced architectural elements, such as pipelines, out-of-order execution, on-chip
memory systems, etc., lead to a large degree of nondeterminism in system execution,
making guarantees harder to provide.

One strategy to the problem of guaranteeing timing requirements, which is some-
times proposed, is to exploit performance-enhancing features that have been devel-
oped and over-provision whenever the criticality of the software is high. The drawback
is that, often, requirements cannot be completely guaranteed anyway, and that re-
sources are wasted, e.g., when low energy budget is important.

It is therefore important to develop techniques that really guarantee timing require-
ments that are commensurate with the actual performance of a system. Significant
advances have been made in the last decade on analysis of timing properties (see,
e.g., [Wilhelm et al. 2008] for an overview). However, these techniques cannot make
miracles. They can only make predictions if the analyzed mechanisms are themselves
predictable, i.e., if their relevant timing properties can be foreseen with sufficient pre-
cision. Fortunately, the understanding of how to design systems that reconcile effi-
ciency and predictability has increased in recent years. Recent research efforts in-
clude european projects, such as Predator1 and MERASA [Ungerer et al. 2010], that
have focused on techniques for designing predictable and efficiency systems, as well
as the PRET project [Edwards and Lee 2007; Lickly et al. 2008a], which aims to equip
instruction-set architectures with predictable timing, etc.

The intention of this paper is to summarize some of the recent research advances,
concerning how to build predictable yet performant systems. We present techniques,
whereby architectural elements that are introduced primarily for efficiency, can also
be made timing-predictable. We also discuss how these techniques can be exploited
by languages and tools so that a developer can directly control timing properties of
a system under development. To limit the exposition, we will not discuss particular
analysis methods for deriving timing bounds; this area has progressed significantly
(e.g., [Wilhelm et al. 2008]), but to include a meaningful overview would require too
much space.

In a first section, we discuss basic concepts, and also make a proposal for how “pre-
dictability” of an architectural mechanism could be defined precisely. Our motivation
is that a better understanding of “predictability” can preclude futile efforts to de-
velop analyses for inherently unpredictable systems, or to redesign already predictable
mechanisms or components. The following Section 3 considers how the instruction-set
architecture for a processor can be equipped with predictable timing semantics, i.e.,
how the execution of machine instructions can be made predictable. Important here is
the design and use of processor pipelines and the memory system.

In Sections 4 and 5, we move up one level of abstraction, and consider two differ-
ent approaches for putting timing under the control of a programmer. In Section 4, we
present synchronous programming languages, whose semantics provide timing guar-
antees, with PRET-C and Synchronous-C as the main examples. We also present how
the timing semantics can be supported by specialized processor implementations. In
Section 5, we describe how a static timing analysis tool for timing analysis (aiT) can
be integrated with a compiler for a widely-used language (C). The integration of these
tools can equip program fragments with timing semantics (of course relative to compi-

1http://www.predator-project.eu/

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

http://www.predator-project.eu/

Building Timing Predictable Embedded Systems ZZ:3

Table I. Examples for intuition behind predictability.

more predictable less predictable

pipeline in-order out-of-order
branch prediction static dynamic
cache replacement LRU FIFO, PLRU
scheduling static dynamic preemptive
arbitration TDMA FCFS

lation strategy and target platform). It is also a basis for assessing different compila-
tion strategies when predictability is the main design objective.

In Section 6, we consider techniques for multicores. Such platforms are finding
their way into many embedded applications, but introduce difficult challenges for pre-
dictability. Major challenges include the arbitration of shared resources such as on-chip
memories and buses. Predictability can be achieved only if logically unrelated activites
can be isolated from each other, e.g., by partitioning communication and memory re-
sources. We also consider some concerns for the sharing of processors between tasks in
scheduling.

2. FUNDAMENTAL PREDICTABILITY CONCEPTS
Predictable system design is made increasingly difficult by past and current develop-
ments in system and computer architecture design, where more performant architec-
tural elements are introduced for performance, but make timing guarantees harder to
provide. Hence, research on in this area can be divided into two strands: On the one
hand there is the development of ever better analyses to keep up with these develop-
ments. On the other hand there is the exercise of influence on system design in order to
avert the worst problems in future designs. We do not want to dispute the value of these
two lines of research. Far from it. However, we argue that both are often built on sand:
Without a better understanding of “predictability”, the first line of research might try
to develop analyses for inherently unpredictable systems, and the second line of re-
search might simplify or redesign architectural components that are in fact perfectly
predictable. To the best of our knowledge there is no agreement — in the form of a
formal definition — what the notion “predictability” should mean. Instead the criteria
for predictability are based on intuition and arguments are made on a case-by-case ba-
sis. Table I gives examples for this intuition-based comparison of predictability. In the
analysis of worst-case execution times (WCET) for instance, simple in-order pipelines
like the ARM7 are deemed more predictable than complex out-of-order pipelines as
found in the POWERPC755.

In the following we discuss key aspects of predictability and therefrom derive a tem-
plate for predictability definitions.

2.1. Key Aspects of Predictability
What does predictability mean? A lookup in the Oxford English Dictionary provides
the following definitions:

predictable: adjective, able to be predicted.
to predict: say or estimate that (a specified thing) will happen in the future
or will be a consequence of something.

Consequently, a system is predictable if one can foretell facts about its future, i.e.
determine interesting things about its behavior. In general, the behaviors of such a
system can be described by a possibly infinite set of execution traces (sequences of
states and transitions). However, a prediction will usually refer to derived properties
of such traces, e.g. their length or a number of interesting events on a trace. While

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

ZZ:4 ArtistDesign NoE

some properties of a system might be predictable, others might not. Hence, the first
aspect of predictability is the property to be predicted.

Typically, the property to be determined depends on something unknown, e.g. the
input of a program, and the prediction to be made should be valid for all possible cases,
e.g. all admissible program inputs. Hence, the second aspect of predictability are the
sources of uncertainty that influence the prediction quality.

Predictability will not be a boolean property in general, but should preferably offer
shades of gray and thereby allow for comparing systems. How well can a property be
predicted? Is system A more predictable than system B (with respect to a certain prop-
erty)? The third aspect of predictability thus is a quality measure on the predictions.

Furthermore, predictability should be a property inherent to the system. Only be-
cause some analysis cannot predict a property for system A while it can do so for sys-
tem B does not mean that system B is more predictable than system A. In fact, it might
be that the analysis simply lends itself better to system B, yet better analyses do exist
for system A.

With the above key aspects we can narrow down the notion of predictability as fol-
lows:

THESIS 2.1. The notion of predictability should capture if, and to what level of
precision, a specified property of a system can be predicted by an optimal analysis. It is
the sources of uncertainty that limit the precision of any analysis.

Refinements. A definition of predictability could possibly take into account more as-
pects and exhibit additional properties.

— For instance, one could refine Proposition 2.1 by taking into account the com-
plexity/cost of the analysis that determines the property. However, the clause “by any
analysis not more expensive than X” complicates matters: The key aspect of inherence
requires a quantification over all analyses of a certain complexity/cost.

— Another refinement would be to consider different sources of uncertainty sepa-
rately to capture only the influence of one source. We will have an example of this
later.

— One could also distinguish the extent of uncertainty. E.g. is the program input
completely unknown or is partial information available?

— It is desirable that the predictability of a system can be determined automati-
cally, i.e. computed.

— It is also desirable that predictability of a system is characterized in a composi-
tional way. This way, the predictability of a composed system could be determined by a
composition of the predictabilities of its components.

2.2. A Predictability Template
Besides the key aspect of inherence, the other key aspects of predictability depend
on the system under consideration. We therefore propose a template for predictability
with the goal to enable a concise and uniform description of predictability instances.
It consists of the above mentioned key aspects (a) property to be predicted, (b) sources
of uncertainty, and (c) quality measure. In the next section we consider one instance of
predictability in more detail to illustrate this idea.

2.3. An Illustrative Instance: Timing Predictability
In this section we illustrate the key aspects of predictability at the hand of timing
predictability.

— The property to be determined is the execution time of a program assuming un-
interrupted execution on a given hardware platform.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

Building Timing Predictable Embedded Systems ZZ:5

F
re

qu
en

cy

Exec-timeLB BCET WCET UB

In addition: abstraction-induced variance

Input- and state-induced variance Overest.

Fig. 1. Distribution of execution times ranging from best-case to worst-case execution time (BCET/WCET).
Sound but incomplete analyses can derive lower and upper bounds (LB, UB).

— The sources of uncertainty are the program input and the hardware state in
which execution begins. Figure 1 illustrates the situation and displays important no-
tions. Typically, the initial hardware state is completely unknown, i.e. the prediction
should be valid for all possible initial hardware states. Additionally, schedulability
analysis cannot handle a characterization of execution times in the form of a function
depending on inputs. Hence, the prediction should also hold for all admissible program
inputs.

— Usually, schedulability analysis requires a characterization of execution times in
the form bounds on the execution time. Hence, a reasonable quality measure is the
quotient of BCET over WCET; the smaller the difference the better.

— The inherence property is satisfied as BCET and WCET are inherent to the sys-
tem.

To formally define timing predictability we need to first introduce some basic defini-
tions.

Definition 2.2. LetQ denote the set of all hardware states and let I denote the set of
all program inputs. Furthermore, let Tp(q, i) be the execution time of program p starting
in hardware state q ∈ Q with input i ∈ I.

Now we are ready to define timing predictability.

Definition 2.3 (Timing predictability). Given uncertainty about the initial hard-
ware state Q ⊆ Q and uncertainty about the program input I ⊆ I, the timing pre-
dictability of a program p is

Prp(Q, I) := min
q1,q2∈Q

min
i1,i2∈I

Tp(q1, i1)
Tp(q2, i2)

(1)

The quantification over pairs of states in Q and pairs of inputs in I captures the un-
certainty. The property to predict is the execution time Tp. The quotient is the quality
measure: Prp ∈ [0, 1], where 1 means perfectly predictable.

Refinements. The above definitions allow analyses of arbitrary complexity, which
might be practically infeasible. Hence, it would be desirable to only consider analyses
within a certain complexity class. While it is desirable to include analysis complex-
ity in a predictability definition it might become even more difficult to determine the
predictability of a system under this constraint: To adhere to the inherence aspect of
predictability however, it is necessary to consider all analyses of a certain complex-
ity/cost.

Another refinement is to distinguish hardware- and software-related causes of un-
predictability by separately considering the sources of uncertainty:

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

ZZ:6 ArtistDesign NoE

A

A

Resource 1

Resource 2

Resource 1

Resource 2

C

B C

B

D E

D E

C ready

(a) Scheduling anomaly.

A

A

Cache Miss

Cache Hit

C

Branch Condition
Evaluated

Prefetch B - Miss C

(b) Speculation anomaly. A and B are
prefetches. If A hits, B can also be
prefetched and might miss the cache.

Fig. 2. Speculation and Scheduling anomalies, taken from [Reineke et al. 2006].

Definition 2.4 (State-induced timing predictability).

SIPrp(Q, I) := min
q1,q2∈Q

min
i∈I

Tp(q1, i)
Tp(q2, i)

(2)

Here, the quantification expresses the maximal variance in execution time due to
different hardware states, q1 and q2, for an arbitrary but fixed program input, i. It
therefore captures the influence of the hardware, only. The input-induced timing pre-
dictability is defined analogously. As a program might perform very different actions
for different inputs, this captures the influence of software:

Definition 2.5 (Input-induced timing predictability).

IIPrp(Q, I) := min
q∈Q

min
i1,i2∈I

Tp(q, i1)
Tp(q, i2)

(3)

Example for state-induced timing unpredictability. A system exhibits a domino ef-
fect [Lundqvist and Stenström 1999] if there are two hardware states q1, q2 such that
the difference in execution time of the same program starting in q1 respectively q2 may
be arbitrarily high, i.e. cannot be bounded by a constant. For instance, the iterations
of a program loop never converge to the same hardware state and the difference in
execution time increases in each iteration.

In [Schneider 2003] Schneider describes a domino effect in the pipeline of the POW-
ERPC 755. It involves the two asymmetrical integer execution units, a greedy instruc-
tion dispatcher, and an instruction sequence with read-after-write dependencies.

The dependencies in the instruction sequence are such that the decisions of the dis-
patcher result in a longer execution time if the initial state of the pipeline is empty
than in case it is partially filled. This can be repeated arbitrarily often, as the pipeline
states after the execution of the sequence are equivalent to the initial pipeline states.
For n subsequent executions of the sequence, execution takes 9n+ 1 cycles when start-
ing in one state, q∗1 , and 12n cycles when starting in the other state, q∗2 . Hence, the
state-induced predictability can be bounded for such programs pn:

SIPrpn
(Q, I) = min

q1,q2∈Qn

min
i∈I

Tpn(q1, i)
Tpn

(q2, i)
≤ Tpn(q∗1 , i

∗)
Tpn

(q∗2 , i∗)
=

9n+ 1
12n

(4)

Another example for a domino effect is given by Berg [Berg 2006] who considers
the PLRU replacement policy of caches. In Section 3, we describe results on the state-
induced cache predictability of various replacement policies.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

Building Timing Predictable Embedded Systems ZZ:7

Timing Anomalies. The notion of timing anomalies was introduced by Lundqvist
and Stenström in [Lundqvist and Stenström 1999]. In the context of WCET anal-
ysis, [Reineke et al. 2006] presents a formal definition and additional examples of
such phenomena. Intuitively, a timing anomaly is a situation where the local worst-
case does not contribute to the global worst-case. For instance, a cache miss–the local
worst-case–may result in a globally shorter execution time than a cache hit because of
scheduling effects. See Figure 2(a) for an example. Shortening instruction A leads to
a longer overall schedule, because instruction B can now block the “more” important
instruction C. Analogously, there are cases where a shortening of an instruction leads
to an even greater decrease in the overall schedule.

Another example occurs with branch prediction. A mispredicted branch results in
unnecessary instruction fetches, which might miss the cache. In case of cache hits the
processor may fetch more instructions. Figure 2(b) illustrates this.

3. MICROARCHITECTURE
An instruction set architecture (ISA) defines the interface between hardware and soft-
ware, i.e., the format of software binaries and their semantics in terms of input/output
behavior. A microarchitecture defines how an ISA is implemented on a processor. A sin-
gle ISA may have many microarchitectural realizations. For example, there are many
implementations of the X86 ISA by INTEL and AMD.

Execution time is not in the scope of the semantics of common ISAs. Different im-
plementations of an ISA, i.e., different microarchitectures, may induce arbitrarily dif-
ferent execution times. This has been a deliberate choice: Microarchitects exploit the
resulting implementation freedom introducing a variety of techniques to improve per-
formance. Prominent examples of such techniques include pipelining, superscalar ex-
ecution, branch prediction, and caching.

As a consequence of abstracting from execution time in ISA semantics, worst-
case execution time (WCET) analyses need to consider the microarchitecture a soft-
ware binary will be executed on. The aforementioned microarchitectural techniques
greatly complicate WCET analyses. For simple, non-pipelined microarchitectures with-
out caches one could simply sum up the execution times of individual instructions to
obtain the exact execution time of a sequence of instructions. With pipelining, caches,
and other features, execution times of successive instructions overlap, and—more
importantly—they vary depending on the execution history2 leading to the execution
of an instruction: a read immediately following a write to the same register incurs a
pipeline stall; the first fetch of an instruction in a loop results in a cache miss, whereas
subsequent accesses may result in cache hits, etc.

3.1. Pipelines
For non-pipelined architectures one can simply add up the execution times of individ-
ual instructions to obtain a bound on the execution time of a basic block. Pipelines
increase performance by overlapping the executions of different instructions. Hence, a
timing analysis cannot consider individual instructions in isolation. Instead, they have
to be considered collectively – together with their mutual interactions – to obtain tight
timing bounds.

The analysis of a given program for its pipeline behavior is based on an abstract
model of the pipeline. All components that contribute to the timing of instructions
have to be modeled conservatively. Depending on the employed pipeline features, the
number of states the analysis has to consider varies greatly.

2In other words: the current state of the microarchitecture.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

ZZ:8 ArtistDesign NoE

Contributions to Complexity. Since most parts of the pipeline state influence tim-
ing, the abstract model needs to closely resemble the concrete hardware. The more
performance-enhancing features a pipeline has the larger is the search space. Super-
scalar and out-of-order execution increase the number of possible interleavings. The
larger the buffers (e.g., fetch buffers, retirement queues, etc.), the longer the influence
of past events lasts. Dynamic branch prediction, cache-like structures, and branch his-
tory tables increase history dependence even more.

All these features influence execution time. To compute a precise bound on the exe-
cution time of a basic block, the analysis needs to exclude as many timing accidents as
possible. Such accidents are data hazards, branch mispredictions, occupied functional
units, full queues, etc.

Abstract states may lack information about the state of some processor components,
e.g., caches, queues, or predictors. Transitions between states of the concrete pipeline
may depend on such information. This causes the abstract pipeline model to become
non-deterministic although the concrete pipeline is deterministic. When dealing with
this non-determinism, one could be tempted to design the WCET analysis such that
only the “locally worst-case” transition is chosen, e.g., the transition corresponding to a
pipeline stall or a cache miss. However, in the presence of timing anomalies [Lundqvist
and Stenström 1999; Reineke et al. 2006] such an approach is unsound. Thus, in gen-
eral, the analysis has to follow all possible successor states.

Classification of microarchitectures from [Wilhelm et al. 2009]. Architectures can be
classified into three categories depending on whether they exhibit timing anomalies or
domino effects [Wilhelm et al. 2009].

— Fully timing compositional architectures: The (abstract model of) an architec-
ture does not exhibit timing anomalies. Hence, the analysis can safely follow local
worst-case paths only. One example for this class is the ARM7. Actually, the ARM7
allows for an even simpler timing analysis. On a timing accident all components
of the pipeline are stalled until the accident is resolved. Hence, one could perform
analyses for different aspects (e.g., cache, bus occupancy) separately and simply add
all timing penalties to the best-case execution time.

— Compositional architectures with constant-bounded effects: These exhibit
timing anomalies but no domino effects. In general, an analysis has to consider all
paths. To trade precision with efficiency, it would be possible to safely discard local
non-worst-case paths by adding a constant number of cycles to the local worst-case
path. The Infineon TriCore is assumed, but not formally proven, to belong to this
class.

— Non-compositional architectures: These architectures, e.g., the PowerPC 755
exhibit domino effects and timing anomalies. For such architectures timing analyses
always have to follow all paths since a local effect may influence the future execution
arbitrarily.

Approaches to Predictable Pipelining. The complexity of WCET analysis can be re-
duced by regulating the instruction flow of the pipeline at the beginning of each basic
block [Rochange and Sainrat 2005]. This removes all timing dependencies within the
pipeline between basic blocks. Thus, WCET analysis can be performed on each basic
block in isolation. The authors take the stance that efficient analysis techniques are a
prerequisite for predictability: “a processor might be declared unpredictable if compu-
tation and/or memory requirements to analyse the WCET are prohibitive.”

With the advent of multi-core and multi-threaded architectures, new challenges and
opportunities arise in the design of timing-predictable systems: Interference between
hardware threads on shared resources further complicates analysis. On the other

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

Building Timing Predictable Embedded Systems ZZ:9

hand, timing models for individual threads are often simpler in such architectures.
Recent work has focussed on providing timing predictability in multithreaded archi-
tectures:

One line of research proposes modifications to simultaneous multithreading ar-
chitectures [Barre et al. 2008; Mische et al. 2008]. These approaches adapt thread-
scheduling in such a way that one thread, the real-time thread, is given priority over
all other threads, the non-real-time threads. As a consequence, the real-time thread
experiences no interference by other threads and can be analyzed without having to
consider its context, i.e., the non-real-time threads. This guarantees temporal isolation
for the real-time thread, but not for any other thread running on the core. If multiple
real-time tasks are needed, then time sharing of the real-time thread is required.

Earlier, a more static approach was proposed by El-Haj-Mahmoud et al. [El-Haj-
Mahmoud et al. 2005] called the virtual multiprocessor. The virtual multiprocessor
uses static scheduling on a multithreaded superscalar processor to remove temporal
interference. The processor is partitioned into different time slices and superscalar
ways, which are used by a scheduler to construct the thread execution schedule offline.
This approach provides temporal isolation to all threads.

The PTARM [Liu et al. 2010], a precision-timed (PRET) machine [Edwards and Lee
2007] implementing the ARM instruction set, employs a five-stage thread-interleaved
pipeline. The thread-interleaved pipeline contains four hardware threads that run in
the pipeline. Instead of dynamically scheduling the execution of the threads, a pre-
dictable round-robin thread schedule is used to remove temporal interference. The
round-robin thread schedule fetches a different thread every cycle, removing data haz-
ard stalls stemming from the pipeline resources. Unlike the virtual multiprocessor, the
tasks on each thread need not be determined a priori, as hardware threads cannot af-
fect each other’s schedule. Unlike Mische et al.’s [Mische et al. 2008] approach, all the
hardware threads in the PTARM can be used for real-time purposes.

3.2. Caches and Scratchpad Memories
There is a large gap between the latency of current processors and that of large memo-
ries. Thus, a hierarchy of memories is necessary to provide both low latencies and large
capacities. In conventional architectures, caches are part of this hierarchy. In caches,
a replacement policy, implemented in hardware, decides which parts of the slow back-
ground memory to keep in the small fast memory. Replacement policies are hardwired
into the hardware and independent of the applications running on the architecture.

The Influence of the Cache-Replacement Policy. Analogously to the state-induced tim-
ing predictability defined in Section 2, one can define the state-induced cache pre-
dictability of cache-replacement policy p, SIPrp(n), to capture the maximal variance in
the number of cache misses due to different cache states, q1, q2 ∈ Qp, for an arbitrary
but fixed sequence of memory accesses, s, of length n, i.e. s ∈ Bn, where Bn denotes
the set of sequences of memory accesses of length n. Given that Mp(q, s) denotes the
number of misses of policy p accessing sequence s starting in cache state q, SIPrp(n) is
defined as follows:

Definition 3.1 (State-induced cache predictability).

SIPrp(n) := min
q1,q2∈Qp

min
s∈Bn

Mp(q1, s)
Mp(q2, s)

(5)

To investigate the influence of the initial cache states in the long run, we have stud-
ied limn→∞ SIPrp(n). A tool called RELACS3, described in [Reineke and Grund 2008],

3The tool is available at http://rw4.cs.uni-saarland.de/~reineke/relacs

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

http://rw4.cs.uni-saarland.de/~reineke/relacs

ZZ:10 ArtistDesign NoE

Table II. State-induced cache predictability of LRU, FIFO, and PLRU for as-
sociativities 2 to 8. PLRU is only defined for powers of two.

2 3 4 5 6 7 8
LRU 1 1 1 1 1 1 1

FIFO 1
2

1
3

1
4

1
5

1
6

1
7

1
8

PLRU 1 − 0 − − − 0

is able to compute limn→∞ SIPrp(n) automatically for a large class of replacement poli-
cies. Using RELACS, we have obtained sensitivity results for the widely-used policies
LRU, FIFO, PLRU, and MRU, at associativities ranging from 2 to 8.

Figure II depicts the analysis results. There can be no cache domino effects for LRU.
Obviously, 1 is the optimal result and no policy can do better. FIFO and PLRU are
much more sensitive to their state than LRU. Depending on its state, FIFO(k) may
have up to k times as many misses. At associativity 2, PLRU and LRU coincide. For
greater associativities, the number of misses incurred by a sequence s starting in state
q1 cannot be bounded the number misses incurred by the same sequence s starting in
another state q2.

Summarizing, both FIFO and PLRU may in the worst-case be heavily influenced by
the starting state. LRU is very robust in that the number of hits and misses is affected
in the least possible way.

Interference on Shared Caches. Without further adaptation, caches do not provide
temporal isolation: the same application, processing the same inputs, may exhibit
wildly varying cache performance depending on the state of the cache when the appli-
cation’s execution begins [Wilhelm et al. 2009]. The cache’s state is in turn determined
by the memory accesses of other applications running earlier. Thus, the temporal be-
havior of one application depends on the memory accesses performed by other applica-
tions. In Section 6, we discuss approaches to eliminate and/or bound interference.

Scratchpad Memories. Scratchpad memories (SPMs) are an alternative to caches in
the memory hierarchy. The same memory technology employed to implement caches
is also used in SPMs: static random access memory (SRAM), which provides constant
low-latency access times. In contrast to caches, however, an SPM’s contents are under
software control: the SPM is part of the addressable memory space, and software can
copy instructions and data back and forth between the SPM and lower levels of the
memory hierarchy. Accesses to the SPM will be serviced with low latency, predictably
and repeatably. However, similar to the use of the register file, it is the compiler’s re-
sponsibility to make correct and efficient use of the SPM. This is challenging, in partic-
ular when the SPM is to be shared among several applications, but it also presents the
opportunity of high efficiency, as the SPM management can be tailored to the specific
application, in contrast to the hardwired cache replacement logic. Section 5.3 briefly
discusses results on SPM allocation and the related topic of cache locking.

3.3. Dynamic Random Access Memory
At the next lower level of the memory hierarchy, many systems employ Dynamic Ran-
dom Access Memory (DRAM). DRAM provides much greater capacities than SRAM, at
the expense of higher and more variable access latencies.

Conventional DRAM controllers do not provide temporal isolation. As with caches,
access latencies depend on the history of previous accesses to the device. In addition,
over time, DRAM cells leak charge. As a consequence, each DRAM row needs to be
refreshed at least every 64ns, which prevents loads or stores from being issued and
modifies the access history, thereby influencing the latency of future loads and stores
in an unpredictable fashion.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

Building Timing Predictable Embedded Systems ZZ:11

Modern DRAM controllers reorder accesses to minimize row accesses and thus ac-
cess latencies. As the data bus and the command bus, which connect the processor
with the DRAM device, are shared between all of the banks of the DRAM device,
controllers also have to resolve contention for these resource by different competing
memory accesses. Furthermore, they dynamically issue refresh commands at—from a
client’s perspective—unpredictable times.

Recently, several predictable DRAM controllers have been proposed [Akesson et al.
2007; Paolieri et al. 2009b; Reineke et al. 2011]. These controllers provide a guar-
anteed maximum latency and minimum bandwidth to each client, independently of
the execution behavior of other clients. This is achieved by a hybrid between static
and dynamic access schemes, which largely eliminate the history dependence of access
times to bound the latencies of individual memory requests, and by predictable arbitra-
tion mechanisms: CCSP in Predator [Akesson et al. 2007] and TDM in AMC [Paolieri
et al. 2009b], allow to bound the interference between different clients. Refreshes are
accounted for conservatively assuming that any transaction might interfere with an
ongoing refresh. Reineke et al. [Reineke et al. 2011] partition the physical address
space following the internal structure of the DRAM device. This eliminates contention
for shared resources within the device, making accesses temporally predictable and
temporally isolated. Replacing dedicated refresh commands with lower-latency man-
ual row accesses in single DRAM banks further reduces the impact of refreshes on
worst-case latencies.

4. SYNCHRONOUS PROGRAMMING LANGUAGES FOR PREDICTABLE SYSTEMS
4.1. Motivation

Why are new programming languages needed for predictability?. Most predictable
systems are at first real-time systems, therefore exhibiting concurrency, complex tim-
ing reasonings, and strict real-time constraints. Programming languages dedicated to
such systems should thus be concurrent and should offer features to reason about the
physical time of the system. Over the years, many approaches have been proposed for
this, which can be coarsely partitioned into language-based approaches (asynchronous
or synchronous concurrent languages) and non-language approaches (typically concur-
rent threads over an RTOS).

It has been advocated that concurrency managed through RTOS threads is not
a good solution for predictability [Lee 2006]. It has also been advocated that asyn-
chronous concurrency is not well suited for programming real-time systems [Ben-
veniste et al. 2003].

It is thus not surprising that almost all the programming languages that have been
proposed for predictable systems are synchronous languages [Benveniste et al. 2003].
Indeed, the synchronous abstraction makes reasoning about time in a program a lot
easier, thanks to the notion of logical ticks: a synchronous program reacts to its en-
vironment in a sequence of ticks, and computations within a tick are assumed to be
instantaneous.

To take a concrete exemple, the Esterel [Berry 2000] statement “every 60 second
emit minute” specifies that the signal minute is exactly synchronous with the 60th oc-
currence of the signal second. At a more fundamental level, the synchronous abstrac-
tion eliminates the non-determinism resulting from the interleaving of concurrent be-
haviors. This allows deterministic semantics, therefore making synchronous programs
amenable to formal analysis and verification, as well as certified code generation. This
abstraction is similar to the one made for synchronous circuits at the HDL level, where
the time needed for a gate to compute its output is neglected, as if the electrons were
flowing infinitely fast.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

ZZ:12 ArtistDesign NoE

To make the synchronous abstraction of instantaneous reactions practical, syn-
chronous languages impose restrictions on the control flow possible within a reaction.
For example, Esterel forbids instantaneous loops, and similarly SyncCharts [André
2003] forbid immediate self-transitions or cycles of transitions that can be taken im-
mediately. Furthermore, it is typically required that the compiler can statically verify
the absence of such problems; this is not only a conservative measure, but is often also
a prerequisite for proving the causality or the constructiveness of a given program and
for computing an execution schedule [Berry 2000].

As it turns out, these control flow restrictions not only make the synchronous ab-
straction work in practice, but are also a valuable asset for timing analysis, as we will
show in this section.

What are the requirements?. As it turns out, time predictability requires more than
just the synchronous abstraction. For instance, it is not sufficient to bound the num-
ber of iteration of a loop, it is also necessary to know exactly this number. Another
requirement is that, in order to be adopted by industry, time-predictable programming
languages should offer the same full power of data manipulations as general purpose
programming languages. This is why the two languages we describe (PRET-C and SC)
are both predictable synchronous languages based on C. Refer to Section 5 for a cover-
age of WCET analysis for the regular C language.

Outline. First, we shortly cover the so-called reactive processors (Section 4.2) and
the language constructs that should be avoided (Section 4.3). Then, we present two
synchronous predictable programming languages in Sections 4.4 (PRET-C) and 4.5
(SC), which are both based on C. We finish with the WCRT analysis (Section 4.6),
related work (Section 4.7), and future work directions (Section 4.8).

4.2. ISAs for Synchronous Programming
Synchronous languages can be used to describe both software and hardware, and a
variety of synthesis approaches for both domains are covered in the literature [Potop-
Butucaru et al. 2007]. The family of reactive processors follows an intermediate ap-
proach where a synchronous program is compiled into machine code that is then run
on a processor with an instruction set architecture (ISA) that directly implements syn-
chronous reactive control flow constructs [von Hanxleden et al. 2006]. The first reac-
tive processor called REFLIX was presented by [Salcic et al. 2002], and this group
has since then developed a number of follow-up designs including REPIC, Emperor,
and StarPRO [Yuan et al. 2008]. The Kiel Esterel Processor (KEP [Li and von Hanxle-
den 2010]) pioneered the multi-threaded reactive approach later adopted by StarPRO,
which in turn added pipelining. The KEP also includes a Tick Manager that minimizes
reaction time jitter and can detect timing overruns. This concept is closely related to
the deadi instruction of the Berkeley-Columbia PRET language [Lickly et al. 2008b].

W.r.t. predictability, the main advantage of reactive processors is that they offer
direct ISA support for crucial features of the languages (e.g., preemption, synchro-
nization, inter-thread communication), therefore allowing a very fine control over the
number of machine cycle required to execute each high-level instruction. This idea of
jointly addressing the language features and the processor / ISA was at the root of the
Berkeley-Columbia PRET solution [Lickly et al. 2008b].

4.3. Language constructs that should be avoided
The language constructs that should be avoided are those commonly excluded by pro-
gramming guidelines used by the software industry concerned with safety critical sys-
tems (at least by the companies that use a general purpose language such as C). The
most notable ones are: pointers, recursive data structures, dynamic memory alloca-

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

Building Timing Predictable Embedded Systems ZZ:13

tion, assignments with side-effects, recursive functions, and variable length loops. The
rationale is that programs should be easy to write, to debug, and to proof-read. The
same holds for PRET programming: What is easier to proof-read by humans is also
easier to analyze by WCRT analyzers.

4.4. The PRET-C language
PRET-C is a light-weight and concurrent programming language based on C [Roop
et al. 2009; Andalam et al. 2010]. A PRET-C program consists of a main() function,
some regular C functions, and one or more parallel threads. Threads communicate
with shared variables, and the synchronous semantics of PRET-C guarantees both a
deterministic execution and the absence of race conditions.

PRET-C extends C with a small set of new constructs in order to: (1) declare a reac-
tive input: “ReactiveInput”; (2) declare a reactive output: “ReactiveOutput”; (3) spawn
two or more parallel threads: “PAR”; (4) and end the local tick of a thread: “EOT”, there-
fore providing a synchronization barrier.

Besides, to make the language usable in practice, a few additional constructs
have been introduced in order to: (5) preempt a block P of code, weakly or strongly:
“[weak] abort {P} when (C)”; (6) wait upon a condition: “await (C)”; (7) create a
thread: “thread T()”; (8) and loop over a block P of code: “while (C) #n {P}”.

The main particularity of PRET-C’s synchronous semantics compared to, say, Es-
terel’s semantics, is that the threads are not interleaved depending on the causal de-
pendencies of the signals during one instant (dependencies that can vary according to
the inputs sampled by the program during that instant). Instead, the PRET-C threads
spawned by a given PAR statement are interleaved in a fixed static order that depends
only on the syntactic order in which they appear in this PAR statement. For instance,
a PAR(T1,T2) results in T1 being scheduled first, up to its first EOT or its termination,
in T2 being scheduled next, again up to its first EOT or its termination, and so on until
both threads are terminated or the PAR itself is preempted. This static order guaran-
tees that any variable shared between T1 and T2 will always be written and read in a
fixed order, therefore making its value deterministic.

Concerning the while loops, two variants exist: (1) loops that include an EOT in their
body (similar to loops in Esterel, which must have a pause in their body); and (2) loops
that have no EOT in their body but for which a fixed bound on the number of iteration
is specified by the programmer, thanks to the “#n” syntax.

All the new constructs of PRET-C are defined as C macros, so compiling works in two
steps: first a macro expansion and then a regular C compiling (both steps can be per-
formed by gcc). The resulting assembly code can be either executed as fast as possible
(for better average performances), or can be embedded in a periodic execution loop. In
both cases, a WCRT analyzer allows precise bounds to be computed (see Section 4.6).

Then, to achieve both predictability and throughput, the ideal is to execute this code
on a platform that offers predictable execution. Such a dedicated architecture has been
developed, inspired by the reactive processors discussed in Section 4.2. It is based on
a customized Microblaze softcore processor (MB) from Xilinx, connected via two fast
simplex links to a so-called Functional Predictable Unit (FPU). The FPU maintains the
context of each parallel thread and allows thread context switching to be carried out
in a constant number of clock cycles, thanks to a linked-lists based scheduler inspired
from CEC’s scheduler [Edwards and Zeng 2007]. Benchmarking results show that this
architecture provides a 26% decrease in the WCRT compared to a stand-alone MB.

Finally, benchmarking results show that PRET-C significantly outperforms Esterel,
both in terms of worst case execution time and code size.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

ZZ:14 ArtistDesign NoE

4.5. The Synchronous-C language (SC)
Like PRET-C, Synchronous C (SC) enriches C with constructs for deterministic con-
currency and preemption. Specifically, SC covers all of SyncCharts, hence its original
name SyncCharts in C [von Hanxleden 2009]. SC was originally motivated by the de-
sire to implement the reactive processing approach and its timing predictability with
as little custom, non-standard instructions as possible. As with the KEP and StarPro
processors, SC implements reactive control flow with a dynamically scheduled thread
interleaving scheme. As we do not have direct access to the program counter at the C
language level, SC keeps track of individual threads via state labels, typically imple-
mented as usual C program labels. These labels can also be viewed as continuations,
or coroutine re-entry points [Kahn and MacQueen 1977].

SC is a (freely available) library of macros and functions that implements reactive
processing fully in software, requiring just a standard C compiler. This might be a bit
surprising, in that standard processors have not been developed with reactive process-
ing in mind. However, one may take advantage of certain machine instructions—with
predictable timing—to effectively perform reactive processing on a non-reactive COTS
processor. For example, SC does thread selection with a single bsr (Bit Scan Reverse)
assembler instruction on the active thread vector. This instruction is available on the
x86 and not part of the C language, but compilers such as gcc make this instruction
available with embedded assembler.

Compared to PRET-C, SC offers a wider range of reactive control and coordination
possibilities, such as dynamic priority changes. This makes SC more powerful and al-
lows, for example, a direct synthesis from SyncCharts [Traulsen et al. 2011]. However,
this additional power may also be a challenge to the user, in particular when using
dynamic priorities, so for the inexperienced programmer it may be advisable to start
with an SC subset that corresponds to PRET-C.

4.6. WCRT analysis for synchronous programs
Concerning SC, a compiler including a WCRT analysis was developed for the KEP, to
compute safe estimates for the Tick Manager [Boldt et al. 2008]). Compared to typical
WCET analysis, the WCRT analysis problem here is more challenging because it in-
cludes concurrency and preemption, which in WCET analysis is often delegated to the
OS. However, the aforementioned deterministic semantics and guiding principles, such
as the absence of instantaneous loops, make it feasible to reach fairly tight estimates.

The flow-graph based approach of [Boldt et al. 2008] was further improved by
Mendler et al. with a modular, algebraic approach that also takes signal valuations
into account to exclude infeasible paths [Mendler et al. 2009]. Besides, Logothetis et al.
used timed Kripke structures to compute tight bounds on synchronous programs [Lo-
gothetis et al. 2003].

Concerning PRET-C, Roop et al. proposed a model-checking based WCRT analyzer
to compute precisely the tick length of PRET-C programs [Roop et al. 2009]. To further
improve the performances of this WCRT analyzer, infeasible execution paths can be
discarded, by combining the abstracted state-space of the program with expressive
data-flow information [Andalam et al. 2011].

Finally, Ju et al. improved the timing analysis of C code synthesized from Esterel
with the CEC compiler by taking advantage of the properties of Esterel [Ju et al. 2008].
They developed an ILP formulation to eliminate redundant paths in the code. This
allows more predictable code to be generated.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

Building Timing Predictable Embedded Systems ZZ:15

4.7. Related Work
The seminal paper on PRET languages and architectures was from Edwards and
Lee [Edwards and Lee 2007]. They further introduced the so-called Berkeley-Columbia
PRET language [Lickly et al. 2008b]. This PRET language is a multi-threaded version
of C, extended with a special deadi instruction with two arguments, a deadline regis-
ter $t and an immediate value v. Placed inside a thread, a “deadi $t,v” arms a timer
which initializes $t with v, decrements $t every six clock cycles4, and blocks the thread
whenever $t is not yet zero. Hence, a deadi can only enforce a lower bound on the exe-
cution time of code segment. By assigning well chosen values to the deadi instructions,
it is therefore possible to design predictable multi-threaded systems, where problems
such as race conditions will be avoided thanks to the interleaving resulting from the
deadi instructions.

4.8. Conclusions and Future Work
The synchronous semantics of PRET-C and SC provides correct-by-construction fea-
tures (i.e., determinism, thread-safe communication, causality, absence of race condi-
tions, and so on), which are essential to design complex predictable systems. For this
reason, we argue that these languages are safer than asynchronous (or non concur-
rent) languages. Numerous examples of reactive systems have been re-implemented
with PRET-C or SC, showing that these languages are very easy to use.

Originally developed mainly with functional determinism in mind, the synchronous
programming paradigm has also demonstrated its benefits with respect to timing
determinism. However, synchronous concepts still have to find their way into main-
stream programming of real-time systems. At this point, this seems less a question of
the maturity of synchronous languages or the synthesis and analysis procedures de-
veloped for them, but rather a question of how to integrate them into programming
and architecture paradigms entrenched today. Possibly, this is best done by either en-
hancing a widely used language such as C with a small set of synchronous/reactive
operations, or by moving from the programming level to the modeling level, where
concurrency and preemption are already fully integrated.

5. COMPILATION FOR TIMING PREDICTABLE SYSTEMS
Software development for embedded systems uses high-level languages like C, and
compilers that include a vast variety of optimizations. However, they mostly aim at re-
ducing average-case execution times. The effect of optimizations on worst-case timings
has not been studied in-depth up to now. In addition, even modern compilers are often
unable to quantify the effect of an optimization since they lack precise timing models.

Currently, software design for real-time systems is tedious: they are often specified
graphically using tools like e.g., Matlab/Simulink. These tools automatically generate
C code which is compiled in the next step. Since usual compilers have no notion of
timing, their optimizations may highly degrade WCETs. Thus, it is common industrial
practice to disable most if not all compiler optimizations. The compiler-generated code
is then manually fed into a timing analyzer. Only after this very final step in the entire
design flow, it can be verified if timing constraints are met. If not, the graphical design
is changed in the hope that the resulting C and assembly codes lead to a lower WCET.

Up to now, no tools exist that assist the designer to purposively reduce WCETs of
C or assembly code, or to automate the above design flow. In addition, hardware re-
sources are heavily oversized due to the use of unoptimized code. Thus, it is desirable
to have a WCET-aware compiler in order to support compilation for timing predictable

4Every six clock cycles because the architecture is pipelined with a six-stages pipeline.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

ZZ:16 ArtistDesign NoE

systems. Integrating timing analysis into the compiler itself has the following bene-
fits: first, it introduces a formal worst-case timing model such that the compiler has a
clear notion of a program’s worst-case behavior. Second, this model is exploited by spe-
cialized optimizations reducing the WCET. Thus, unoptimized code no longer needs
to be used, cheaper hardware platforms tailored towards the real software resource
requirements can be used, and the tedious work of manually reducing the WCET of
auto-generated C code is eliminated. Third, manual WCET analysis is no more re-
quired since this is integrated into and done transparently by the compiler.

5.1. Related Work
A very first approach to integrate WCET techniques into a compiler was presented
by [Börjesson 1996]. Flow facts used for timing analysis were annotated manually via
source-level pragmas but are not updated during optimization. This turns the entire
approach tedious and error-prone. Additionally, the compiler targets the Intel 8051,
i.e. an inherently simple and predictable machine without pipeline and caches etc.

While mapping high-level code to object code, compilers apply various optimizations
so that the correlation between high-level flow facts and the optimized object code
becomes very low. To keep track of the influence of compiler optimizations on high-level
flow facts, co-transformation of flow facts is proposed by [Engblom 1997]. However, the
co-transformer has never reached a fully working state, and several standard compiler
optimizations can not be modeled at all due to insufficient data structures.

Techniques to transform program path information which keep high-level flow facts
consistent during GCC’s standard optimizations have been presented by [Kirner and
Puschner 2001]. Their approach was thoroughly tested and led to precise WCET es-
timates. However, compilation and timing analysis are done in a decoupled way. The
assembly file generated by the compiler is passed to the timing analyzer together with
the transformed flow facts. Additionally, the proposed compiler is only able to process
a subset of ANSI-C, and the modeled target processor lacks pipelines and caches.

[Zhao et al. 2005a] integrated a proprietarily developed WCET analyzer into a com-
piler operating on a low-level intermediate representation (IR). Control flow informa-
tion is passed to the analyzer that computes the worst-case timing of paths, loops and
functions and returns this data to the compiler. However, the timing analyzer works
with only very coarse granularity since it only computes WCETs of paths, loops and
functions. WCETs for basic blocks or single instructions are unavailable. Thus, aggres-
sive optimization of smaller units like single basic blocks is infeasible. Furthermore,
important data that is not the WCET itself is unavailable. This excludes e.g., execu-
tion frequencies of basic blocks, value ranges of registers, predicted cache behavior etc.
Finally, WCET optimization at higher levels of abstraction like e.g., source code level
is infeasible since timing-related data is not provided at source code level.

5.2. Structure of the WCET-aware C Compiler WCC
The most advanced compiler for timing predictable systems is the WCET-aware C
Compiler [WCC 2012] developed within the ArtistDesign NoE. This section presents
WCC in more detail as a case study on how compilers for timing predictable systems
could look like. WCC is an ANSI-C compiler for Infineon TriCore processors that are
heavily used in the automotive industry. The following subsections describe the key
components turning WCC into a unique compiler for real-time systems. A complete
description of the compiler’s infrastructure is given in [Falk and Lokuciejewski 2010].

Specification of Memory Hierarchies
The performance of many systems is dominated by the memory subsystem. Obviously,
timing estimates also heavily depend on the memories. In the WCC environment, it

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

Building Timing Predictable Embedded Systems ZZ:17

is up to the compiler to provide the WCET analyzer with detailed information about
the underlying memory hierarchy. Thus, the compiler uses an infrastructure to specify
memory hierarchies. Furthermore, it exploits this memory hierarchy infrastructure to
apply memory-aware optimization by assigning parts of a program to fast memories.

WCC provides a simple interface to specify memory hierarchies. For each physical
memory region, attributes like e. g., base address, length, access latency etc. can be de-
fined. For caches, parameters like e. g., size, line size or associativity can be specified.
Memory allocation of program parts is now done in the compiler’s back-end by allocat-
ing functions, basic blocks or data to these memory regions. The compiler provides a
convenient programming interface to do such memory allocations of code and data.

Integration of Static WCET Analysis into the Compiler
To obtain a formal worst-case timing model, the compiler’s back-end integrates the
static WCET analyzer aiT. During timing analysis, aiT stores the program under anal-
ysis and its analysis results in an IR called CRL2. Thus, aiT is integrated into WCC
by translating the compiler’s assembly code IR to CRL2 and vice versa.

Moreover, physical memory addresses provided by WCC’s memory hierarchy infras-
tructure are exploited during CRL2 generation. Using WCC’s memory hierarchy API,
physical addresses for basic blocks are determined and passed to aiT. Targets of jumps,
which are represented by symbolic block labels, are translated into physical addresses.

Using this infrastructure, WCC produces a CRL2 file modeling the program for
which worst-case timing data is required. Fully transparent to the compiler user, aiT
is called on this CRL2 file. After timing analysis, the results obtained by aiT are im-
ported back into the compiler. Among others, this includes: worst-case execution time
of a whole program, or per function or basic block; worst-case execution frequency per
function or basic block; approximations of register values; cache misses per basic block.

Flow Fact Specification and Transformation
A program’s execution time (on a given hardware) largely depends on its control flow,
e. g., on loops or conditionals. Since loop iteration counts are crucial for precise WCETs,
and since they can not be computed automatically in general, they must be specified by
the user of a timing analyzer. These user-provided control flow annotations are called
flow facts. WCC fully supports source-level flow facts by means of ANSI-C pragmas.

Loop bound flow facts limit the iteration counts of regular loops. They allow to spec-
ify the minimum and maximum iteration counts. For example, the following C code
snippet specifies that the shown loop body is executed 50 to 100 times:

_Pragma("loopbound min 50 max 100")
for (i = 1; i <= maxIter; i++)
Array[i] = i * fact * KNOWN_VALUE;

A definition of minimum and maximum iteration counts allows to annotate data-
dependent loops (see above). For irregular loops or recursions, flow restrictions are
provided that relate the execution frequency of one C statement with that of others.

However, compiler optimizations potentially restructure the code and invalidate
originally specified flow facts. Therefore, WCC’s optimizations are fully flow-fact
aware. All operations of the compiler’s IRs creating, deleting or moving statements
or basic blocks now automatically update flow facts. This way, always safe and precise
flow facts are maintained, irrespective of how and when optimizations modify the IRs.

5.3. Examples of WCET-aware Optimizations
On top of the compiler infrastructure described above, a large number of novel WCET-
aware optimizations are integrated into WCC. The following sections briefly present
three of them: scratchpad allocation, code positioning and cache partitioning.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

ZZ:18 ArtistDesign NoE

Scratchpad Memory Allocation and Cache Locking
As already motivated in Section 3.2, scratchpad memories (SPMs) or locked caches are
ideal for WCET-centric optimizations since their timing is fully predictable. Optimiza-
tions allocating parts of a program’s code and data onto these memories have been
studied intensely in the past [Wehmeyer and Marwedel 2005; Campoy et al. 2005;
Suhendra et al. 2005].

WCC exploits scratchpads by placing parts of a program into an SPM [Falk and
Kleinsorge 2009] using integer linear programming (ILP). Inequations model the struc-
ture of a program’s control flow graph (CFG). Constants model the worst-case timing
per basic block when being allocated to slow main memory or to the fast SPM. This
way, the ILP is always aware of that path in the CFG leading to the longest execution
time and can thus optimally minimize the WCET. Besides scratchpads, the compiler
also supports cache locking using a similar optimization approach [Plazar et al. 2012].

Experimental results over a total of 73 different benchmarks from e.g. UTDSP, Me-
diaBench and MiBench for the Infineon TriCore TC1796 processor show that already
very small scratchpads, where only 10% of a benchmark’s code fit into, lead to consid-
erable WCET reductions of 7.4%. Maximum WCET reductions of up to 40% on average
over all 73 benchmarks have been observed.

Code Positioning
Code positioning is a well-known compiler optimization improving the I-cache behav-
ior. A contiguous mapping of code fragments in memory avoids overlapping of cache
sets and thus decreases the number of cache conflict misses. Code positioning as such
was studied in many different contexts in the past, like e. g. to avoid jump-related
pipeline delays [Zhao et al. 2005b] or at granularity of entire functions [Lokuciejewski
et al. 2008] or tasks [Gebhard and Altmeyer 2007].

WCC’s code positioning [Falk and Kotthaus 2011] aims to systematically reduce I-
cache conflict misses and thus to reduce the WCET of a program. It uses a cache conflict
graph (CG) as the underlying model of a cache’s behavior. Its nodes represent either
functions or basic blocks of a program. An edge is inserted whenever two nodes inter-
fere in the cache, i. e. potentially evict themselves from the cache. Using WCC’s inte-
grated timing analysis capabilities, edge weights are computed which approximate the
number of possible cache misses that are caused during the execution of a CG node.

On top of the conflict graph, heuristics for contiguous and conflict-free placement
of basic blocks and entire functions are applied. They iteratively place those two basic
blocks / functions contiguously in memory which are connected by the edge with largest
weight in the conflict graph. After this single positioning step, the impact of this change
on the whole program’s worst-case timing is evaluated by doing a timing analysis. If
the WCET is reduced, this last positioning step is kept, otherwise it is undone.

This code positioning decreases cache misses for 18 real-life benchmarks by 15.5% on
average for an Infineon TC1797 with a 2-way set-associative cache. These cache miss
reductions translate to average WCET reductions by 6.1%. For direct-mapped caches,
even larger savings of 18.8% (cache misses) and 9.0% (WCET) were achieved.

Cache Partitioning for Multi-Task Systems
The cache-related optimizations presented so far cannot handle multi-task systems
with preemptive scheduling, since it is difficult to predict the cache behavior during
context switches. Cache partitioning is a technique for multi-task systems to turn I-
caches more predictable. Each task of a system is exclusively assigned a unique cache
partition. The tasks in such a system can only evict cache lines residing in the partition
they are assigned to. As a consequence, multiple tasks do not interfere with each other

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

Building Timing Predictable Embedded Systems ZZ:19

any longer w.r.t. the cache during context switches. This allows to apply static timing
analysis to each individual task in isolation. The overall WCET of a multi-task system
using partitioned caches is then composed of the worst-case timing of the single tasks
given a certain partition size, plus the overhead for scheduling and context switches.

WCET-unaware cache partitioning has already been examined in the past. Cache
hardware extensions and associativity- and set-based cache partitioning have been
proposed in [Chiou et al. 1999] and [Molnos et al. 2004], resp. [Mueller 1995] presents
ideas for compiler support for software-based cache partitioning which serves as basis
for WCC’s cache partitioning. Software-based cache partitioning scatters the code of
each task over the address space such that tasks are solely mapped to only those cache
lines belonging to the task’s partition. WCC’s cache partitioning [Plazar et al. 2009]
again relies on ILP to optimally determine the individual tasks’ partition sizes.

Cache partitioning has been applied to task sets with 5, 10 and 15 tasks, resp. Com-
pared to a naive code size-based heuristic for cache partitioning, WCC’s approach
achieves substantial WCET reductions of up to 36%. In general, WCET savings are
higher for small caches and lower for larger caches. In most cases, larger task sets
exhibit a higher optimization potential as compared to smaller task sets.

5.4. Conclusions and Future Work
This section discussed compiler techniques and concepts for timing predictable sys-
tems by exploiting a worst-case timing model. Up till now, not much was known about
the WCET savings achievable this way. This section provided a survey over research
work exploring the potential of such integrated compilation and timing analysis.

The WCET-aware C Compiler WCC served as case study of a compiler for timing
predictable systems. Currently, WCC focuses on code optimization for single-task and
single-core systems. Just recently, first steps towards support of multi-task or multi-
core systems were made. Therefore, WCET-aware optimizations for multi-task and
multi-core systems is the main focus for future work in this area.

6. BUILDING REAL-TIME APPLICATIONS ON MULTICORES
6.1. Background
Multicore processors bring a great opportunity for high-performance and low-power
embedded applications. Unfortunately, the current design of multicore architectures is
mainly driven by performance, not by considering timing predictability. Typical mul-
ticore architectures [Albonesi and Koren 1994] integrate a growing number of cores
on a single processor chip, each equipped with one or two levels of private caches. The
cores and peripherals usually share a memory hierarchy including L2 or L3 caches and
DRAM or Flash memory. An interconnection network offers a communication mecha-
nism between the cores, the I/O peripherals and the shared memory. A shared bus
can hold a limited number of components as in the ARM Cortex A9 MPCORE. Larger-
scale architectures implement more complex Networks on Chip (NoC), like meshes
(e.g. the Tile64 by Tilera) or crossbars (e.g. the P4080 by Freescale), to offer a wider
communication bandwidth. In all cases, conflicts among accesses from various cores or
DMA peripherals to the shared memory must be arbitrated either in the network or in
the memory controller. In the following, we distinguish between storage resources (e.g.
caches) that keep information for a while, generally for several cycles and bandwidth
resources (e.g. bus or interconnect) that are typically reallocated at each cycle.

6.2. Timing Interferences and Isolation
The timing behavior of a task running on a multicore architecture depends heavily
on the arbitration mechanism of the shared resources and other tasks’ usage of the re-

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

ZZ:20 ArtistDesign NoE

sources. First, due to the conflicts with other requesting tasks on bandwidth resources,
the instruction latencies may be increased and can even be unbounded. Furthermore,
the contents of storage resources especially caches may be corrupted by other tasks,
which results in an increased number of misses. Computing safe WCET estimates re-
quires taking into account the additional delays due to the activity of co-scheduled
tasks.

To bound the timing interferences, there are two categories of potential solutions.
The first, referred to as joint analysis, considers the whole set of tasks competing
for shared resources to derive bounds on the delays experienced by each individual
task. This usually requires complex computations, and it may provide tighter WCET
bounds. However, it is restricted to cases where all the concurrent tasks are statically
known. The second approach aims at enforcing spatial and temporal isolation so that
a task will not suffer from timing interferences by other tasks. Such an isolation can
be controlled by software and/or hardware.

Joint Analysis. To estimate the WCETs of concurrent tasks, a joint analysis approach
considers all the tasks together to accurately capture the impact of interactions on
the execution times. A simple approach to analyzing a shared cache is to statically
identify cache lines shared by concurrent tasks and consider them as corrupted [Hardy
et al. 2009] at run time. The analysis can be improved by taking task lifetimes into
account: tasks that cannot be executed concurrently due to the scheduling algorithm
and inter-task dependencies should not be considered as possibly conflicting. Along
this line of work, Li et al. [Li et al. 2009] propose an iterative approach to estimate the
WCET bounds of tasks sharing L2 caches. To further improve the analysis precision,
the timing behaviour of cache access may be modeled and analyzed using abstract
interpretation and model checking techniques [Lv et al. 2010]. Other approaches aim
at determining the extra execution time of a task due to contention on the memory
bus [Bjorn Andersson and Lee 2010; Schliecker et al. 2010]. Decoupling the estimation
of memory latencies from the analysis of the pipeline behaviour is a way to enhance
analysability. However, it is safe for fully timing-compositional systems only.

Spatial and Temporal Isolation. Ensuring that tasks will not interfere in shared resources
makes their WCETs analyzable using the same techniques as for single cores. Task
isolation can be controlled by software allowing COTS-based multicores or enforced by
hardware transparent to the applications.

The PRedictable Execution Model [Pellizzoni et al. 2010] requires programs to be
annotated by the programmer and then compiled as a sequence of predictable inter-
vals. Each predictable interval includes a memory phase where caches are prefetched
and an execution phase that cannot experience cache misses. A high level schedule of
computation phases and I/O operations enables the predictability of accesses to shared
resources. TDMA-based resource arbitration allocates statically-computed slots to the
cores [Rosen et al. 2007; Andrei et al. 2008]. To predict latencies, the alignment of ba-
sic block time-stamps to the allocated bus slots can be analyzed [Chattopadhyay et al.
2010]. However, TDMA-based arbitration is not so common in multicore processors on
the market due to performance reasons.

To make the latencies to shared bandwidth resources predictable (boundable), hard-
ware solutions rely on bandwidth partitioning techniques, e.g. round-robin arbitra-
tion [Paolieri et al. 2009a]. Software-controlled cache partitioning schemes allocate
private partitions to tasks. For example, Page-coloring [Guan et al. 2009a] allocates
the cache content of each task to certain areas in the shared cache by mapping the
virtual memory addresses of that task to proper physical memory regions. Then the
avoidance of cache interference does not come for free, as the explicit management of
cache space adds another dimension to the scheduling and complicates the analysis.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

Building Timing Predictable Embedded Systems ZZ:21

6.3. System-Level Scheduling and Analysis
For single-processor platforms, there are well-established techniques (e.g. rate-
monotonic scheduling) for system-level scheduling and schedulability analysis. The
designer may rely on the WCET bounds of tasks and allocate computing resources ac-
cordingly to ensure system-level timing guarantees. For multicore platforms, one may
take a similar approach. However the multiprocessor scheduling problem to map tasks
onto parallel architectures is a much harder challenge. No well-established techniques
exist but various scheduling strategies with mostly sufficient conditions for schedula-
bility have been proposed.

Global Scheduling. One may allow all tasks to compete for execution on all cores.
Global scheduling is a realistic option for multcore systems, on which the task migra-
tion overhead is much less significant compared with traditional loosly-coupled multi-
processor systems thanks to the hardware mechanisms like on-chip shared cache. So a
rapidly increasing interest rises in the study of global scheduling since the late 1990s,
around the same time as the major silicon vendors such as IBM and AMD started the
development of multicore processors. Global multiprocessor scheduling is a much more
difficult problem than uniprocessor scheduling, as first pointed out by Liu in 1969 [Liu
1969]: The simple fact that a task can use only one processor even when several proces-
sors are free at the same time adds a surprising amount of difficulty to the scheduling
of multiple processors.

One may simply adopt a global task queue and map the released tasks onto the par-
allel processing cores using single-processor scheduling algorithms such as RM and
EDF. Unfortunately these algorithms suffer from the so-called Dhall effect [Dhall and
Liu 1978], namely some system with utilization arbitrarily close to 1 can be infeasi-
ble no matter how many processors are added to the system. This result leads to the
negative view that global scheduling is widely considered unsuitable for real-time sys-
tems. One way to overcome the Dhall effect is fairness scheduling [Baruah et al. 1996],
which splits up the task’s execution into small pieces and interleaves them with other
tasks, to keep the execution of a task to progress in the speed proportional to its work-
load. Fairness scheduling and its variants [Anderson and Srinivasan 2001] can achieve
optimality, but is usually considered impracticable to implement due to the run-time
overheads.

The major obstacle in precisely analyzing global scheduling and thereby fully ex-
ploring its potential is that global scheduling suffers from timing anomalies, i.e., a
schedulable system can become unschedulable by a parameter change that appears to
be harmless. In uniprocessor fixed-priority scheduling the critical instant is the situ-
ation where all the interfering tasks release their first instance simultaneously and
all the following instances are released as soon as possible. Unfortunately, the critical
instant in global scheduling is in general unknown. The critical instant in uniproces-
sor scheduling, with a strong intuition of resulting in the maximal system workload,
does not necessarily lead to the worst-case situation in global fixed-priority scheduling
[Lauzac et al. 1998]. Therefore, the analysis of global scheduling requires to explore
all the possible system behavior.

A large body of works has been done on the efficient analysis of global scheduling
by over-approximation. The common approach is to derive an upper bound on the total
workload of a task system. Much work has been done on tightening the workload es-
timation by excluding impossible system behavior from the calculation (e.g. [Bertogna
and Cirinei 2007; Guan et al. 2009b]). The work in [Guan et al. 2009b] established
the concept of abstract critical instant for global fixed-priority scheduling, namely the
worst-case response time of a task occurs under the situation that all higher-priority
tasks, except at most M − 1 of them (M is the number of processors), are released in

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

ZZ:22 ArtistDesign NoE

the same way as the critical instant in uniprocessor fixed-priority scheduling. Although
the abstract critical instant does not provide an accurate worst-case release pattern, it
restricts the analysis to a significantly smaller subset of the overall state space.

The uniprocessor scheduling algorithms like RM and EDF lose their optimality
on multicores, which gives rise to the question of what are actually the good global
scheduling strategies? The fundamental work on global scheduling [Devi and Ander-
son 2005] showed that global EDF, although it can not guarantee deadlines under full
workload (100% utilization) any longer, still maintains a weaker concept of optimality
in the sense of guaranteeing bounded tardiness (response time) under full workload.
In contrast, global fixed-priority scheduling is proved to be able to guarantee bounded
tardiness (response time) under a more restricted condition [Guan et al. 2009b].

Partitioned Scheduling. For a long time, the common wisdom in multiprocessor schedul-
ing is to partition the system into subsets each of which is scheduled on a single pro-
cessor [Carpenter et al. 2004]. The design and analysis of partitioned scheduling is rel-
atively simple: as soon as the system has been partitioned into subsystems that will be
executed on individual processors each, the traditional uniprocessor real-time schedul-
ing and analysis techniques can be applied to each individual subsystem/processor.
The system partitioning is similar to the bin-packing problem [Coffman et al. 1997],
for which efficient heuristics are known although it is in general intractable. Similar
to the bin-packing problem, partitioned scheduling suffers from resource waste due
to fragmentation. Such a waste will be more significant, as the multi core evolves in
the direction to integrate a larger number of less powerful cores and the workload of
each task becomes relatively heavier comparing with the processing capacity of each
individual core. Theoretically, the worst-case utilization bound of partitioned schedul-
ing can not exceed 50% regardless of the local scheduling algorithm on each processor
[Carpenter et al. 2004].

To overcome this theoretical bound, one may take a hybrid approach where most
tasks may be allocated to a fixed core, while only a small number of tasks are allowed
to run on different cores, which is similar to task migration but in a controlled and
predictable mannor as the migrating tasks are mapped to dedicated cores statically.
This is sometimes called semi-partitioned scheduling. Similar to splitting the items
into small pieces in the bin-packing problem, semi-partitioned scheduling can very well
solve the resource waste problem in partitioned scheduling and exceed the 50% utiliza-
tion bound limit. On the other hand, the context-switch overhead of semi-partitioned
scheduling is smaller than global scheduling as it involves less task migration between
different cores.

Several different partitioning and splitting strategies have been applied to both
fixed-priority and EDF scheduling (e.g. [Lakshmanan et al. 2009; Guan et al. 2010]).
Recently, a notable result is obtained in [Guan et al. 2010], which generalizes the fa-
mous Liu and Layland’s utilization bound N × (2

1
N − 1) [Liu and Layland 1973] for

uniprocessor fixed priority scheduling to multicores by a semi-partitioned scheduling
algorithm using RM [Liu and Layland 1973] on each core. This result is further ex-
tended to generalize various parametric utilization bounds (for example the 100% uti-
lization bound for harmonic task systems) to multi cores [Guan et al. 2012]. Another
hybrid approach combining global and partitioned scheduling is clustered scheduling
[Bastoni et al. 2010b], which partitions the processor cores into subsets (called a clus-
ter each), and uses global scheduling to schedule the subset of tasks assigned to each
cluster. Clustered scheduling suffers less resource waste than partitioned scheduling,
and may reduce the context switch penalty than global scheduling on hardware archi-
tectures where cores are actually grouped into clusters with closer resource sharing.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

Building Timing Predictable Embedded Systems ZZ:23

Implementation and Evaluation. To evaluate the performance and applicability of differ-
ent scheduling paradigms in RTOS supporting multicore architectures, LITMUSRT

[Calandrino et al. 2006], a Linux-based testbed for real-time multiprocessor schedul-
ing has been developed. Much research has been done using the testbed to account for
the (measured) run-time overheads of various multiprocessor scheduling algorithms in
the respective theoretical analysis (e.g. [Bastoni et al. 2010b]). The run-time overheads
include mainly the scheduler latency (typically several tens µs in Linux [Zhang et al.
2011]) and cache-related costs, which depends on the application work space charac-
terization, and can vary between several µs and tens ofms [Bastoni et al. 2010a; Zhang
et al. 2011]. Their studies indicate that partitioned scheduling and global scheduling
have both pros and cons, but partitioned scheduling performs better for hard real-time
applications [Bastoni et al. 2010b]. Clustered scheduling exhibits competitive perfor-
mance on cluster-based multi-core architectures as it mitigates both the high run-time
overhead in global scheduling and the resource waste of fragmentation in partitioned
scheduling. Recently, evaluations have also been done with semi-partitioned schedul-
ing algorithms [Bastoni et al. 2011], together with the work in [Zhang et al. 2011;
Bletsas and Andersson 2011], indicating that semi-partitioned scheduling is indeed a
promising scheduling paradigm for multicore real-time system. The work of [Zhang
et al. 2011] shows that on multicore processors equipped with shared caches and high-
speed inter-connections, task migration overhead is typically with the same order of
magnitude as intra-core context-switch overhead; for example, on an Intel Core-i7 4-
cores machine running LINUX, the typical costs for task migration are in the scale of
one to two hundred µs for a task with one MB working size.

6.4. Conclusion and Challenges
On multicore platforms, to predict the timing behaviour of an individual task, one
must consider the global behaviour of all tasks on all cores and also the resource ar-
bitration mechanisms. To trade timing composability and predictability with perfor-
mance decreases, one may partition the shared resource with performance decreases.
For storage resource, page-coloring may be used to avoid conflicts and ensure bounded
delays. Unfortunately, it is not clear how to partition a bandwidth resource unless
a TDMA-like arbitration protocol is used. To map real-time tasks onto the proces-
sor cores for system-level resource management and integration, a large number of
scheduling techniques has been developed in the area of multiprocessor scheduling.
However, the known techniques all rely on safe WCET bounds of tasks. Without proper
spatial and temporal isolation, it seems impossible to achieve such bounds. To the best
of our knowledge, there is no work on bridging WCET analysis and multiprocessor
scheduling. Future challenges include also integrating different types of real-time ap-
plications with different levels of criticality on the same platform to fully utilize the
computation resources for low-criticality applications and to provide timing guaran-
tees for high-criticality applications.

7. CONCLUSIONS
In this paper, we have surveyed some recent advances regarding techniques for build-
ing timing predictable embedded systems. A previous survey [Thiele and Wilhelm
2004] examined the then state-of-the-art regarding techniques for building predictable
systems, and outlined some directionss ahead. We can now see that interesting devel-
opments have occurred along several of them.

In [Thiele and Wilhelm 2004], one suggested path was to integrate timing analysis
across several design layers. The development of the WCC compiler, and of timing-
predictable synchronous languages, are offering a solution to this problem, at least on
task-level. Another suggestion was to develop better coordination of shared resources:

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

ZZ:24 ArtistDesign NoE

this is becoming critical with the advent of multicores. Although good solutions for
predictable systems on multicore are not yet available, the understanding of the nec-
essary elements towards this goal has increased significantly. But perhaps the main
obstacle for building truly predictable systems is that although it is in many respects
understood how to build predictable systems, the building blocks for actually realizing
them are not available in today’s processor platforms.

References
1991. Can specification 2.0.
2004. Iso 11898-4:2004 road vehicles – controller area network (can) – part 4: Time-triggered communica-

tion.
2008. Functional safety of electrical/electronic/programmable electronic safety-related systems (iec 61508).
AKESSON, B., GOOSSENS, K., AND RINGHOFER, M. 2007. Predator: A predictable SDRAM memory con-

troller. In CODES+ISSS ’07. 251–256.
ALBONESI, D. H. AND KOREN, I. 1994. Tradeoffs in the design of single chip multiprocessors. In 2nd Inter-

national Conference on Parallel Architectures and Compilation Techniques.
ANDALAM, S., ROOP, P., AND GIRAULT, A. 2010. Predictable multithreading of embedded applications using

PRET-C. In International Conference on Formal Methods and Models for Codesign, MEMOCODE’10.
Grenoble, France.

ANDALAM, S., ROOP, P., AND GIRAULT, A. 2011. Pruning infeasible paths for tight WCRT analysis of syn-
chronous programs. In Design Automation and Test in Europe Conference, DATE’11. Grenoble, France.

ANDERSON, J. H. AND SRINIVASAN, A. 2001. Mixed pfair/erfair scheduling of asynchronous periodic tasks.
In ECRTS.

ANDRÉ, C. 2003. Semantics of SyncCharts. Tech. Rep. ISRN I3S/RR–2003–24–FR, I3S Laboratory, Sophia-
Antipolis, France. April.

ANDREI, A., ELES, P., PENG, Z., AND ROSEN, J. 2008. Predictable implementation of real-time applications
on multiprocessor systems-on-chip. In VLSID.

AUSSAGUÈS, C., CHABROL, D., DAVID, V., ROUX, D., WILLEY, N., TOURNADRE, A., AND GRANIOU, M.
2010. Pharos, a multicore os ready for safety-related automotive systems: results and future prospects.
In Embedded Real Time Software and Systems.

AVIZIENIS, A., LAPRIE, J., AND RANDELL, B. 2000. Fundamental concepts of dependability. In 3rd IEEE
Information Survivability Workshop (ISW). 7 – 12.

AXER, P., SEBASTIAN, M., AND ERNST, R. 2011. Reliability analysis for mpsocs with mixed-critical, hard
real-time constraints. In Proc. Intl. Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS). Taiwan.

BARRE, J., ROCHANGE, C., AND SAINRAT, P. 2008. A predictable simultaneous multithreading scheme for
hard real-time. In Architecture of computing systems ’08. 161–172.

BARUAH, S. K., COHEN, N. K., PLAXTON, C. G., AND VARVEL, D. A. 1996. Proportionate progress: A notion
of fairness in resource allocation. Algorithmica.

BASTONI, A., BRANDENBURG, B., AND ANDERSON, J. 2011. Is semi-partitioned scheduling practical.
ECRTS.

BASTONI, A., BRANDENBURG, B. B., AND ANDERSON, J. H. 2010a. Cache-related preemption and migra-
tion delays: Empirical approximation and impact on schedulability. OSPERT.

BASTONI, A., BRANDENBURG, B. B., AND ANDERSON, J. H. 2010b. An empirical comparison of global,
partitioned, and clustered multiprocessor edf schedulers. RTSS.

BENVENISTE, A., CASPI, P., EDWARDS, S., HALBWACHS, N., LE GUERNIC, P., AND DE SIMONE, R. 2003.
The synchronous languages twelve years later. Proceedings of the IEEE 91, 1, 64–83. Special issue on
embedded systems.

BERG, C. 2006. PLRU cache domino effects. In WCET ’06. IBFI, Schloss Dagstuhl, Germany.
BERRY, G. 2000. The foundations of Esterel. In Proof, Language, and Interaction: Essays in Honour of Robin

Milner, G. Plotkin, C. Stirling, and M. Tofte, Eds. MIT Press, 425–454.
BERTOGNA, M. AND CIRINEI, M. 2007. Response-time analysis for globally scheduled symmetric multipro-

cessor platforms. In RTSS.
BJORN ANDERSSON, A. E. AND LEE, J. 2010. Finding an upper bound on the increase in execution time

due to contention on the memory bus in cots-based multicore systems. In ACM SIGBED Review.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

Building Timing Predictable Embedded Systems ZZ:25

BLETSAS, K. AND ANDERSSON, B. 2011. Implementing slot-based task-splitting multiprocessor scheduling.
In SIES.

BOLDT, M., TRAULSEN, C., AND VON HANXLEDEN, R. 2008. Compilation and worst-case reaction time
analysis for multithreaded Esterel processing. EURASIP Journal on Embedded Systems 2008, 1–21.

BÖRJESSON, H. 1996. Incorporating worst case execution time in a commercial c-compiler. M.S. thesis,
Uppsala University, Department of Computer Systems, Uppsala, Sweden.

BROSTER, I., BERNAT, G., AND BURNS, A. 2002a. Weakly hard real-time constraints on controller area
network. In 14th Euromicro Conference on Real-Time Systems, 2002. Proceedings. 134–141.

BROSTER, I., BURNS, A., AND RODRÍGUEZ-NAVAS, G. 2002b. Probabilistic analysis of can with faults. In
Proceedings of the 23rd Real-Time Systems Symposium. 269–278.

BROSTER, I., BURNS, A., AND RODRIGUEZ-NAVAS, G. 2004. Comparing real-time communication under
electromagnetic interference. In Proceedings of the 16th Euromicro Conference on Real-Time Systems.
IEEE Computer Society.

BURNS, A., PUNNEKKAT, S., STRIGINI, L., AND WRIGHT, D. 1999. Probabilistic scheduling guarantees for
fault-tolerant real-time systems. In Dependable Computing for Critical Applications.

CALANDRINO, J. M., LEONTYEV, H., BLOCK, A., DEVI, U. C., AND ANDERSON, J. H. 2006. Litmusrt : A
testbed for empirically comparing real-time multiprocessor schedulers. RTSS.

CAMPOY, A. M., PUAUT, I., IVARS, A. P., ET AL. 2005. Cache contents selection for statically-locked instruc-
tion caches: An algorithm comparison. In Proceedings of the 17th Euromicro Conference on Real-Time
Systems (ECRTS). Palma de Mallorca, Spain, 49–56.

CARPENTER, J., FUNK, S., HOLMAN, P., SRINIVASAN, A., ANDERSON, J., AND BARUAH, S. 2004. A Catego-
rization of Real-Time Multiprocessor Scheduling Problems and Algorithms.

CHATTOPADHYAY, S., ROYCHOUDHURY, A., AND MITRA, T. 2010. Modeling shared cache and bus in multi-
cores for timing analysis. In SCOPES.

CHIOU, D., RUDOLPH, L., DEVADAS, S., AND ANG, B. S. 1999. Dynamic cache partitioning via columniza-
tion. Tech. Rep. 430, Massachusetts Institute of Technology, Cambridge, United States. Nov.

COFFMAN, E. G., GAREY, M. R., AND JOHNSON, D. S. 1997. Approximation algorithms for bin packing: a
survey.

DEVI, U. AND ANDERSON, J. 2005. Tardiness bounds for global EDF scheduling on a multiprocessor. In
RTSS.

DHALL, S. K. AND LIU, C. L. 1978. On a real-time scheduling problem. In Operations Research, Vol. 26, No.
1, Scheduling.

EDWARDS, S. AND LEE, E. 2007. A case for precision timed (PRET) machine. In Design Automation Confer-
ence, DAC’07. IEEE, Los Alamitos, San Diego (CA), USA, 264–265.

EDWARDS, S. AND ZENG, J. 2007. Code generation in the Columbia Esterel Compiler. EURASIP J. on
Embedded Systems. Article ID 52651.

EL-HAJ-MAHMOUD, A., AL-ZAWAWI, A. S., ANANTARAMAN, A., AND ROTENBERG, E. 2005. Virtual mul-
tiprocessor: an analyzable, high-performance architecture for real-time computing. In Proc. of CASES.
ACM, New York, NY, USA, 213–224.

ENGBLOM, J. 1997. Worst-case execution time analysis for optimized code. M.S. thesis, Uppsala University,
Department of Computer Systems, Uppsala, Sweden.

FALK, H. AND KLEINSORGE, J. C. 2009. Optimal static wcet-aware scratchpad allocation of program code.
In Proceedings of the 46th Design Automation Conference (DAC). San Francisco, United States, 732–737.

FALK, H. AND KOTTHAUS, H. 2011. Wcet-driven cache-aware code positioning. In Proceedings of the Inter-
national Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES). Taipei,
Taiwan, 145–154.

FALK, H. AND LOKUCIEJEWSKI, P. 2010. A compiler framework for the reduction of worst-case execution
times. The International Journal of Time-Critical Computing Systems (Real-Time Systems) 46, 2, 251–
300.

FERREIRA, J., OLIVEIRA, A., FONSECA, P., AND FONSECA, J. 2004. An experiment to assess bit error rate
in can. In Proceedings of 3rd International Workshop of Real-Time Networks (RTN2004. 15–18.

GEBHARD, G. AND ALTMEYER, S. 2007. Optimal task placement to improve cache performance. In Proceed-
ings of the International Conference on Embedded Software (EMSOFT). Salzburg, Austria, 259–268.

GUAN, N., STIGGE, M., YI, W., AND YU, G. 2009a. Cache-aware scheduling and analysis for multicores. In
EMSOFT.

GUAN, N., STIGGE, M., YI, W., AND YU, G. 2009b. New response time bounds of fixed priority multiprocessor
scheduling. In RTSS.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

ZZ:26 ArtistDesign NoE

GUAN, N., STIGGE, M., YI, W., AND YU, G. 2010. Fixed-priority multiprocessor scheduling with Liu &
Layland’s utilization bound. In RTAS.

GUAN, N., STIGGE, M., YI, W., AND YU, G. 2012. Parametric utilization bounds for fixed-priority multipro-
cessor scheduling. In IPDPS.

HARDY, D., PIQUET, T., AND PUAUT, I. 2009. Using bypass to tighten wcet estimates for multi-core proces-
sors with shared instruction caches. In RTSS.

IZOSIMOV, V., POP, P., ELES, P., AND PENG, Z. 2005. Design optimization of time-and cost-constrained
fault-tolerant distributed embedded systems. In Proceedings of the conference on Design, Automation
and Test in Europe-Volume 2. IEEE Computer Society, 864–869.

JU, L., HUYNH, B. K., ROYCHOUDHURY, A., AND CHAKRABORTY, S. 2008. Performance debugging of Es-
terel specifications. In CODES+ISSS. 173–178.

KAHN, G. AND MACQUEEN, D. B. 1977. Coroutines and networks of parallel processes. In IFIP Congress.
993–998.

KIM, K., DIAZ, J., BELLO, L., LOPEZ, J., LEE, C.-G., AND MIN, S. L. 2005. An exact stochastic analysis
of priority-driven periodic real-time systems and its approximations. Computers, IEEE Transactions
on 54, 11, 1460 – 1466.

KIRNER, R. AND PUSCHNER, P. 2001. Transformation of path information for wcet analysis during compi-
lation. In Proceedings of ECRTS. Delft, Netherlands.

KOPETZ, H. 1997. Real-Time Systems: Design Principles for Distributed Embedded Applications. Kluwer
Academic Publishers, Norwell, MA, USA.

LAKSHMANAN, K., RAJKUMAR, R., AND LEHOCZKY, J. 2009. Partitioned fixed-priority preemptive schedul-
ing for multi-core processors. In ECRTS.

LAUZAC, S., MELHEM, R., AND MOSSE, D. 1998. Comparison of global and partitioning schemes for schedul-
ing rate monotonic tasks on a multiprocessor. In ECRTS.

LEE, E. 2006. The problem with threads. IEEE Comput. 5, 33–42.
LI, X. AND VON HANXLEDEN, R. 2010. Multi-threaded reactive programming—the Kiel Esterel Processor.

IEEE Transactions on Computers.
LI, Y., SUHENDRA, V., LIANG, Y., MITRA, T., AND ROYCHOUDHURY, A. 2009. Timing analysis of concurrent

programs running on shared cache multi-cores. In RTSS.
LICKLY, B., LIU, I., KIM, S., PATEL, H., EDWARDS, S., AND LEE, E. 2008a. Predictable programming on a

precision timed architecture. In CASES ’08. 137–146.
LICKLY, B., LIU, I., KIM, S., PATEL, H. D., EDWARDS, S. A., AND LEE, E. A. 2008b. Predictable program-

ming on a precision timed architecture. In Proceedings of Compilers, Architectures, and Synthesis of
Embedded Systems (CASES’08). Atlanta, USA.

LIU, C. L. 1969. Scheduling algorithms for multiprocessors in a hard real-time environment. In JPL Space
Programs Summary.

LIU, C. L. AND LAYLAND, J. W. 1973. Scheduling algorithms for multiprogramming in a hard-real-time
environment. In Journal of the ACM.

LIU, I., REINEKE, J., AND LEE, E. A. 2010. A pret architecture supporting concurrent programs with com-
posable timing properties. In 44th Asilomar Conference on Signals, Systems, and Computers. 2111–2115.

LOGOTHETIS, G., SCHNEIDER, K., AND METZLER, C. 2003. Generating formal models for real-time verifica-
tion by exact low-level runtime analysis of synchronous programs. In International Real-Time Systems
Symposium (RTSS). IEEE Computer Society, Cancun, Mexico, 256–264.

LOKUCIEJEWSKI, P., FALK, H., AND MARWEDEL, P. 2008. Wcet-driven cache-based procedure positioning
optimizations. In Proceedings of the 20th Euromicro Conference on Real-Time Systems (ECRTS 08).
Prague, Czech Republic, 321–330.

LUNDQVIST, T. AND STENSTRÖM, P. 1999. Timing anomalies in dynamically scheduled microprocessors. In
RTSS ’09. 12–21.

LUNDQVIST, T. AND STENSTRÖM, P. 1999. Timing anomalies in dynamically scheduled microprocessors. In
Proceedings of the 20th IEEE Real-Time Systems Symposium (RTSS’99). 12–21.

LV, M., YI, W., GUAN, N., AND YU, G. 2010. Combining abstract interpretation with model checking for
timing analysis of multicore software. In RTSS.

MENDLER, M., VON HANXLEDEN, R., AND TRAULSEN, C. 2009. Wcrt algebra and interfaces for esterel-
style synchronous processing. In Proceedings of the Design, Automation and Test in Europe Conference
(DATE’09). Nice, France.

MISCHE, J., UHRIG, S., KLUGE, F., AND UNGERER, T. 2008. Exploiting spare resources of in-order SMT
processors executing hard real-time threads. In ICCD ’08. 371–376.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

Building Timing Predictable Embedded Systems ZZ:27

MOLNOS, A. M., HEIJLIGERS, M. J. M., COTOFANA, S. D., AND VAN EIJNDHOVEN, J. T. J. 2004. Cache
partitioning options for compositional multimedia applications. In Proceedings of the 15th Annual Work-
shop on Circuits, Systems and Signal Processing (ProRISC). Veldhoven, the Netherlands, 86–90.

MUELLER, F. 1995. Compiler support for software-based cache partitioning. In Proceedings of the Workshop
on Languages, Compilers and Tools for Real-Time Systems. La Jolla, United States, 125–133.

NAVET, N., SONG, Y., AND SIMONOT, F. 2000. Worst-case deadline failure probability in real-time applica-
tions distributed over can (controller area network). Journal of System Architectures 46, 606–617.

PAOLIERI, M., NONES, E. Q., CAZORLA, F. J., BERNAT, G., AND VALERO, M. 2009a. Hardware support for
wcet analysis of hard real-time multicore systems. In ISCA.

PAOLIERI, M., QUINONES, E., CAZORLA, F., AND VALERO, M. 2009b. An analyzable memory controller for
hard real-time CMPs. Embedded Syst. Letters 1, 4, 86–90.

PELLIZZONI, R., SCHRANZHOFER, A., CHEN, J.-J., CACCAMO, M., AND THIELE, L. 2010. Worst case delay
analysis for memory interference in multicore systems. In DATE.

PLAZAR, S., FALK, H., KLEINSORGE, J. C., AND MARWEDEL, P. 2012. Wcet-aware static locking of in-
struction caches. In Proceedings of the International Symposium on Code Generation and Optimization
(CGO). San Jose, United States.

PLAZAR, S., LOKUCIEJEWSKI, P., AND MARWEDEL, P. 2009. Wcet-aware software based cache partition-
ing for multi-task real-time systems. In Proceedings of the 9th International Workshop on Worst-Case
Execution Time Analysis (WCET). Dublin, Ireland.

POTOP-BUTUCARU, D., EDWARDS, S. A., AND BERRY, G. 2007. Compiling Esterel. Springer.
REINEKE, J. AND GRUND, D. 2008. Sensitivity of cache replacement policies. Reports of SFB/TR 14

AVACS 36, SFB/TR 14 AVACS. March. ISSN: 1860-9821, http://www.avacs.org.
REINEKE, J., LIU, I., PATEL, H. D., KIM, S., AND LEE, E. A. 2011. Pret dram controller: Bank privatization

for predictability and temporal isolation. In CODES+ISSS. ACM.
REINEKE, J., WACHTER, B., THESING, S., WILHELM, R., POLIAN, I., EISINGER, J., AND BECKER, B. 2006.

A definition and classification of timing anomalies. In Proceedings of 6th International Workshop on
Worst-Case Execution Time (WCET) Analysis.

ROCHANGE, C. AND SAINRAT, P. 2005. A time-predictable execution mode for superscalar pipelines with
instruction prescheduling. In Computing Frontiers ’05. 307–314.

ROOP, P., ANDALAM, S., VON HANXLEDEN, R., YUAN, S., AND TRAULSEN, C. 2009. Tight WCRT analysis
of synchronous C programs. In International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, CASES’09. ACM, Grenoble, France.

ROSEN, J., ANDREI, A., ELES, P., AND PENG, Z. 2007. Bus access optimization for predictable implementa-
tion of real-time applications on multiprocessor systems-on-chip. In RTSS.

SALCIC, Z. A., ROOP, P. S., BIGLARI-ABHARI, M., AND BIGDELI, A. 2002. REFLIX: A processor core
for reactive embedded applications. In Proceedings of the 12th International Conference on Filed Pro-
grammable Logic and Applications (FPL-02), M. Glesner, P. Zipf, and M. Renovell, Eds. LNCS Series,
vol. 2438. Springer, Montpellier, France, 945–945.

SCHLIECKER, S., NEGREAN, M., AND ERNST, R. 2010. Bounding the shared resource load for the perfor-
mance analysis of multiprocessor systems. In DATE.

SCHNEIDER, J. 2003. Combined schedulability and WCET analysis for real-time operating systems. Ph.D.
thesis, Saarland University.

SEBASTIAN, M., AXER, P., AND ERNST, R. 2011. Utilizing hidden markov models for formal reliability analy-
sis of real-time communication systems with errors. In 17th IEEE Pacific Rim International Symposium
on Dependable Computing.

SEBASTIAN, M. AND ERNST, R. 2009. Reliability analysis of single bus communication with real-time re-
quirements. In Proceedings of the 2009 15th IEEE Pacific Rim International Symposium on Dependable
Computing. IEEE Computer Society, 3–10.

SMOLENS, J., GOLD, B., KIM, J., FALSAFI, B., HOE, J., AND NOWATZYK, A. 2004. Fingerprinting: bounding
soft-error detection latency and bandwidth. In ACM SIGARCH Computer Architecture News. Vol. 32.
ACM, 224–234.

STANKOVIC, J. AND RAMAMRITHAM, K. 1990. What is predictability for real-time systems? Real-Time
Syst. 2, 247–254.

SUHENDRA, V., MITRA, T., ROYCHOUDHURY, A., ET AL. 2005. Wcet centric data allocation to scratchpad
memory. In Proceedings of the 26th IEEE Real-time Systems Symposium (RTSS). Miami, Florida, USA,
223–232.

THIELE, L. AND WILHELM, R. 2004. Design for timing predictability. Real-Time Syst. 28, 2-3, 157–177.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

ZZ:28 ArtistDesign NoE

TRAULSEN, C., AMENDE, T., AND VON HANXLEDEN, R. 2011. Compiling SyncCharts to Synchronous C.
In Proceedings of the Design, Automation and Test in Europe Conference (DATE’11). IEEE, Grenoble,
France, 563–566.

UNGERER, T. ET AL. 2010. MERASA: Multi-core execution of hard real-time applications supporting
analysability. IEEE Micro 99.

VON HANXLEDEN, R. 2009. Synccharts in c—a proposal for light-weight, deterministic concurrency. In Pro-
ceedings of the International Conference on Embedded Software (EMSOFT’09). ACM, Grenoble, France,
225–234.

VON HANXLEDEN, R., LI, X., ROOP, P., SALCIC, Z., AND YOONG, L. H. 2006. Reactive processing for reac-
tive systems. ERCIM News 67, 28–29.

WCC 2012. Wcet-aware compilation. http://ls12-www.cs.tu-dortmund.de/research/activities/wcc.
WEHMEYER, L. AND MARWEDEL, P. 2005. Influence of memory hierarchies on predictability for time con-

strained embedded software. In Proceedings of Design Automation and Test in Europe (DATE). Munich,
Germany, 600–605.

WILHELM, R., ENGBLOM, J., ERMEDAHL, A., HOLSTI, N., THESING, S., WHALLEY, D., BERNAT, G., FER-
DINAND, C., HECKMANN, R., MITRA, T., MUELLER, F., PUAUT, I., PUSCHNER, P., STASCHULAT, J.,
AND STENSTRÖM, P. 2008. The worst-case execution-time problem—overview of methods and survey of
tools. ACM Transaction on Embedded Computing Systems.

WILHELM, R., GRUND, D., REINEKE, J., SCHLICKLING, M., PISTER, M., AND FERDINAND, C. 2009. Mem-
ory hierarchies, pipelines, and buses for future architectures in time-critical embedded systems. Trans.
on CAD of Integrated Circuits and Syst. 28, 7, 966–978.

YUAN, S., ANDALAM, S., YOONG, L. H., ROOP, P. S., AND SALCIC, Z. 2008. STARPro—a new multithreaded
direct execution platform for Esterel. In Proceedings of Model Driven High-Level Programming of Em-
bedded Systems (SLA++P’08). Budapest, Hungary.

ZHANG, Y., GUAN, N., YI, W., AND XIAO, Y. 2011. Implementation and empirical comparison of partitioning-
based multi-core scheduling. In SIES.

ZHAO, W., KREAHLING, W., WHALLEY, D., ET AL. 2005a. Improving wcet by optimizing worst-case paths.
In Proceedings of RTAS. San Francisco, California.

ZHAO, W., WHALLEY, D., HEALY, C., ET AL. 2005b. Improving wcet by applying a wc code-positioning
optimization. ACM Transactions on Architecture and Code Optimization 2, 4, 335–365.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article ZZ, Publication date: January 2012.

http://ls12-www.cs.tu-dortmund.de/research/activities/wcc

	1 Introduction
	2 Fundamental Predictability Concepts
	2.1 Key Aspects of Predictability
	2.2 A Predictability Template
	2.3 An Illustrative Instance: Timing Predictability

	3 Microarchitecture
	3.1 Pipelines
	3.2 Caches and Scratchpad Memories
	3.3 Dynamic Random Access Memory

	4 Synchronous programming languages for predictable systems
	4.1 Motivation
	4.2 ISAs for Synchronous Programming
	4.3 Language constructs that should be avoided
	4.4 The PRET-C language
	4.5 The Synchronous-C language (SC)
	4.6 WCRT analysis for synchronous programs
	4.7 Related Work
	4.8 Conclusions and Future Work

	5 Compilation for timing predictable systems
	5.1 Related Work
	5.2 Structure of the WCET-aware C Compiler WCC
	5.3 Examples of WCET-aware Optimizations
	5.4 Conclusions and Future Work

	6 Building Real-Time Applications on Multicores
	6.1 Background
	6.2 Timing Interferences and Isolation
	6.3 System-Level Scheduling and Analysis
	6.4 Conclusion and Challenges

	7 Conclusions

