Year 4 Review Dresden, March 16th, 2012

Cluster

Achievements and Perspectives :

Hardware Platforms and MPSoC Design

artirt

leader : Jan Madsen (DTU)

Luca Benini (UNIBO)

Overall High-Level Objectives and Vision

- Focus on Design and Analysis
- Hardware architecture and software components in their interaction
- Tools for accurate estimation
- Growing importance of resource awareness in embedded systems
- Design methodology
 - Scales to massively parallel and heterogeneous multiprocessor architectures
 - Allows for predictable system properties
 - Uses the available hardware resources in an efficient manner
- Adaptivity

artırt

- Robustness
- Life-time management
- Resilience

Integration Achieved

ortist.

in the area, in Europe GA - Pilot GA - FET Flagship ARTEMIS SRA Multitherman - ERC **STRATEGIC** NANOSYS - ERC **ARTEMIS T-CREST** FP7 **GENESI** EURETILE PROD3D iFest **ASAM SMECY** RECOMP SYSMODEL **GRAFTERS** CERTAINTY **SCALOPES** COMBEST **PREDATOS** IoE GALAXY ARTIST2 **ARTISTDESIGN** EEDA 2007 2012 2013 201

SEVENTH FRAMEWORK PROGRAMME

Building Excellence

in the area, in Europe

• 337 publications

ntino 9

- 27% joint
- Several best papers
 - Cluster got all 3 best papers at ESWeek 2009
- 8 tools
- 3 spin-offs
- 9 workshops
- 19 tutorials
- 10 special sessions
- 64 invited talks

Main Scientific Highlights and Insights Gained

- MPSoC timing analysis and optimization
 - Better understanding of the timing of multi-core systems with shared resources, including temperature, reliability and effects of 3D integration
- Mixed criticality systems
- Self-powered systems
 - Harvesting energy from the environment

MPSoC System and Analysis Model

artin

- real-time analysis via modular performance analysis (MPA)*
 - streams and resources represented by *arrival/service curves*
 - output: worst-case bounds on system timing properties latency, buffers, temperature

*modular performance analysis (MPA) http://www.mpa.ethz.ch

6

Thermal Analysis Model in System-Level Design Space Exploration

artirt

- experimental set-up: MJPEG decoder executed on MPARM platform & HotSpot simulator (50 candidate mappings analyzed)
- **objectives:** worst-case peak temperature and overall worstcase latency (both evaluated with MPA)

SEVENTH FR/

Power, Thermal and Reliability Aware Resource Managment for Multicores Systems (UNIBO, Intel Lab)

• Thermal effects become a scalability wall for manycores due to hot spots

artırt

 Solution: Dynamic operating point control with feedback from HW/SW sensors

• Optimal control: maximize performance & minimize energy at safe temperature

 Based on a fully distributed, scalable Model Predictive Control approach

 Includes estimation and autocalibration of internal thermal models

SEVENTH FR/

Fault tolerance optimization with harden processors (LiU, DTU)

Increase in reliability / Decrease in process failure probabilities

 N_1

 P_1

arturt

Increased execution time of processes Increased hardware cost

artirt

Application Example

Viacheslav Izosimov from LiU awarded Best PhD thesis in embedded systems at DATE 2012

80

60

40

20

 $\mathbf{0}$

Low

accepted architectures

%

MAX – nargening-only optimization **MIN** – software-level-only optimization

OPT – combined architecture

Accepted architecture:

- Cost constraint
- Time constraints
- Reliability goal

Hardening performance degradation (HPD) 5%

Performance difference between the least hardened and the most hardened versions

Maximum cost 20

Medium High % accepted architectures in relation to different technologies (fault rates)

Task Mapping and Bandwidth Reservation for Mixed Hard/Soft Fault-Tolerant Embedded Systems

- Given: A mixed hard/soft fault-tolerant application and a distributed platform
- Determine: Mapping and Utilization
- Such that:

artırt

- Deadlines for all hard real-time tasks are satisfied (Even in case of faults)
- Probability of meeting of deadline for soft tasks is maximized

HW/SW Energy Harvesting Techniqes (UNIBO, ETHZ, DTU)

Effective, long term, power supplies are limited and/or expensive

Goal

artirt

Investigate energy harvesting and management technologies that can support the operation of a smart sensor node **indefinitely**

Conventional energy management:
How do we save energy ?

Energy harvesting management:
When do we use energy ?

It's a cross-layer issue!

Joint Activities

- Timing analysis: MPSoC scheduling [resources, thermal]
 - SSCGTA-cluster and MV-cluster

artin

- Workshops Software Synthesis and MAP2MPSOC
- Predictability: MPSoC and NoC
- Reliability: Fault-tolerance [timing, power/reliability]
- Adaptivity: Run-time management, self-healing MPSoC

Tools and Platforms

- **SymTA/S**: Development and verification of embedded multiprocessor real-time systems (TUBS,ETHZ,SymtaVision,AbsInt)
- Analysis and optimization framework for fault tolerant distributed embedded systems (LiU,DTU)
- **MPHP**: An integration of MPA parallelization assistant and MH static memory allocation for MPSoC (IMEC,KTH,Dortmund,TU/e,DUTH)
- **MoVES**: Modelling and verification of embedded systems (DTU,AAU)
- **MPA**: Modular Performance Analysis (ETHZ, TUBS)
- **DOL**: Distributed operation layer (ETHZ,UNIBO)

artıra

- **McNoC**: Multicore network on chip (KTH,NTUA,NUDT)
- . ForSyDe: Formal system design (KTH,DTU) integrated with SystemC

Many of the tools are used and further developed together with industry in ARTEMIS and FP7 projects

Lasting Impacts Future interaction beyond the end of the NoE

Research

artır

- Heavy influence on ARTEMIS program and projects
- NanoTera [Swiss project 2008-2020]
- ARAMIS [German many-core project 2011-2014]
- Guardian Angels [EU FET Flagship]
- Education
 - iCES [Masters Program in Embedded Systems, KTH + industry]
 - Models of Multicore Programming [Masters Program in at the Sino-Danish University in Beijing, China]
 - Exchange program [KTH and Fudan University in Shanghai, China]
- Industry
 - 3 start-up companies [Symtavision, Wispes, BiomiCore]
 - Large number of "Artist" PhDs now going into industry
 - Contribution to standards [AVB, RTJava]
 - Education and awareness of Systems Engineering for Embedded Systems [4 year program in Denmark]
- Community
 - ADSIG (EDAA)

rutin

Start-up Companies

Final Overall Assessment

- The efforts to establish an integrated modeling and design methodology that can take into account predictability and efficiency constraints have successfully been continued from ARTIST2
- Focus on both multi- and many-core platforms as well as platforms for distributed networked systems
- Special emphasis on resource-awareness. Obtained a better understanding of the timing of multi-core systems with shared resources through the development of timing analysis methods that have been applied to industrial use cases
- Challenge to include and handle consequences of emerging technologies
 - 3D chip integration, variability, microfluidic biochips and self-powered wireless sensors
 - Risk assessment [insight gained from industry collaborations]

Final Overall Assessment

artirt

Embedded Systems is a *technology* NOT just a service!

