

●  Contributions to global activities
(Education, spreading excellence, transversal clusters)

●  Code generation:
All types of generation of executable code from standard
(frequently imperative) languages

●  Linking timing analysis and compilers

●  Software Synthesis:
Generation of software from higher level specifications, e.g. in
MATLAB or UML

●  Timing analysis
Computation of safe bounds on the execution time

Scope of the cluster

Contributions toward education
●  Organization of the workshop on embedded system

education (WESE)
- Published in the ACM Digital Library
- Main forum for embedded system education
- Will be continued beyond the end of the NoE

●  Contribution at summer schools
- Summer schools in China (2x), Brazil, Morocco, Europe
 - Will be continued beyond the end of the NoE

●  Joint teaching
E.g. at ALARI, Lugano

●  Text book on embedded systems …

Embedded System Text Book
•  Textbook, slides, video recorded lectures

(
http://ls12-www.cs.tu-dortmund. de/daes/daes/mitarbeiter/prof-dr-peter-
marwedel/embedded-system-text-book/slides/slides-2011.html)

Contract
signed
last week

Downloads: ~1400
Copies: 500

●  Contributions to global activities
(Education, spreading excellence, transversal clusters)

●  Code generation:
All types of generation of executable code from standard
(frequently imperative) languages

●  Linking timing analysis and compilers

●  Software Synthesis:
Generation of software from higher level specifications, e.g. in
MATLAB or UML

●  Timing analysis
Computation of safe bounds on the execution time

Scope of the cluster

Target Platforms

–  Trend toward increased performance requirements
for systems, in particular, embedded systems

–  Due to power and thermal constraints, single
processors cannot provide the required
performance

  Multi-processors have to be used

–  For embedded systems, they are usually
integrated on one chip

  Multi-processor systems on a chip (MPSoCs) are
the target for design processes

  Techniques for mapping applications to MPSoC
urgently needed

P0 P1

P3 P2

A Simple Classification

Architecture fixed/
Auto-parallelizing

Fixed Architecture Architecture to be
designed

Starting from
given task graph

Map to CELL, Hopes
(SNU), Qiang XU
(HK), Simunic
(UCSD)

DOL,
SystemCodesigner

Auto-parallelizing Mnemee (Dortmund)

Franke (Edinburgh)

Daedalus

MAPS

MAPS
Several tools for mapping applications to MPSoCs have

become available
●  MAPS (RWTH Aachen)

Huawei has consulted RWTH Aachen to develop a
3-years technology roadmap on their MPSoC
programming flow. The roadmap was tailored to
future directions for Huawei wireless products.

MAPS-TCT Framework

R
ai

ne
r L

eu
pe

rs
, W

ei
hu

a
S

he
ng

: M
A

P
S

: A
n

In
te

gr
at

ed

Fr
am

ew
or

k
fo

r M
P

S
oC

 A
pp

lic
at

io
n

P
ar

al
le

liz
at

io
n,

 1
st

W

or
ks

ho
p

on
 M

ap
pi

ng
 o

f A
pp

lic
at

io
ns

 to
 M

P
S

oC
s,

R

he
in

fe
ls

 C
as

tle
, 2

00
8

©
 L

eu
pe

rs
, S

he
ng

, 2
00

8

Software Analysis & Transformation

IMEC

●  MH parallelization assistant

U. Passau

●  Establishment of the polyhedron model for loop
parallelization with several entries in the Encyclopedia of
Parallel Computing, September 2011

●  First steps of making the polyhedron model multicore-
ready (polly.llvm.org)

●  Moving the polyhedron model further towards practical
embedded systems

●  Contributions to global activities
(Education, spreading excellence, transversal clusters)

●  Code generation:
All types of generation of executable code from standard
(frequently imperative) languages

●  Linking timing analysis and compilers

●  Software Synthesis:
Generation of software from higher level specifications, e.g. in
MATLAB or UML

●  Timing analysis
Computation of safe bounds on the execution time

Scope of the cluster

Reconciling compilers and timing analysis

Compilers mostly unaware of execution times

–  Execution times are checked in a “trial-and-error” loop:
{try: compile – run – check – error: change}*

  Integration of safe, static timing analysis into compiler

–  Getting rid of loops (if everything works well)

–  Potential for optimizing for the WCET

WCETEST

Structure of WCC (WCET-aware C-compiler)
● 

LL
IR

2C
R

L
C

R
L2

LL
IR

Register Allocation
100% = WCETEST using Standard Graph Coloring (highest degree)

93%

24%

69%

[H. Falk]

Property of the PREDATOR consortium. Confidential.

WCET-aware SPM allocation
●  Setup

–  Bosch Democar: Runnable: IgnitionSWCSync
Part of task actuator
activated every 90° of crankshaft angle time-critical

–  WCET-aware SPM allocation of program code by WCC,
including fully automated WCET analyses using aiT and solution
of the ILP for SPM allocation

–  WCET reduced to about 50%, compared to gcc.

●  PREDATOR project partners Bosch & Airbus
interested in WCC

Timing Analysis and Compiler Techniques

Automatic Pareto-optimal trade-off between WCET, ACET
(and code size)

•  Result: trade-off WCET ↔ ACET reveals that (for the considered
standard optimizations) WCET performs similar to ACET;
achieved WCET and ACET reductions are very similar

●  Contributions to global activities
(Education, spreading excellence, transversal clusters)

●  Code generation:
All types of generation of executable code from standard
(frequently imperative) languages

●  Linking timing analysis and compilers

●  Software Synthesis:
Generation of software from higher level specifications, e.g. in
MATLAB or UML

●  Timing analysis
Computation of safe bounds on the execution time

Scope of the cluster

Software Synthesis
1 call for a special journal issue
3 Workshops on Software Synthesis;

program of the 3rd workshop:
●  Shuvra Bhattacharyya:

Software Synthesis from Dataflow Graphs: State of the Art
and Emerging Trends

●  Kaushik Ravindran and Hugo Andrade:
From Streaming Models to Hardware and Software
Implementations

●  Marco di Natale:
From analysis to optimization in the deployment of real-time
distributed functions in modern automotive systems

●  Rajeev Alur: Interfaces for control components
●  Nicolas Halbwachs:

Code generation from synchronous languages - a short

●  Contributions to global activities
(Education, spreading excellence, transversal clusters)

●  Code generation:
All types of generation of executable code from standard
(frequently imperative) languages

●  Linking timing analysis and compilers

●  Software Synthesis:
Generation of software from higher level specifications, e.g. in
MATLAB or UML

●  Timing analysis
Computation of safe bounds on the execution time

Scope of the cluster

Timing Analysis Scientific Highlights
●  Timing analysis divided into code- and system level

●  We deal with code level: estimate longest execution time
of code (WCET)

WCET
estimates

Response
time

Schedulability

●  Safe bounds essential for verification of hard RT systems
(automotive, avionics, ...)

●  Unsafe bounds can also be acceptable in some
situations (soft RT)

Challenges for WCET analysis
●  WCET depends on:

–  Program code
–  Hardware
–  Runtime environment (input data, concurrent activities, ...)

●  Challenges:
–  Rapid development in HW architecture:

●  Multicore/MPSoC, parallel architectures
●  Complex processors & memory systems: superscalar, cache, ...

–  SW: complex code, many abstraction layers, unpredictable
program flow

Achievements in the network
●  Foundational issues

●  Design principles for timing-predictable systems

●  Advanced analysis methods

The multicore timing predictability problem

●  Competition for shared resources makes access times
dependent on all other possible concurrent accesses

●  Timing composability is lost. Very detrimental to timing
predictability

Design principles
●  PROMPT design principles for predictable HW/SW parallel

architectures

●  Main idea: avoid sharing data and resources whenever possible

●  SW localization: localize data. Avoid shared data when not strictly
needed

●  HW localization: Use local memories (scratchpads) for local data.
Avoid shared caches

●  Whatever remains shared: put under strict scheduling control.
Predictable time slots for all activities (e.g., TDMA)

●  Result: timing composability is regained. WCET analysis can again
be done separately, for each core

Design principles (II)

A
B

C

Design principles (III)

A

B

C

A

B

Under
predictable
scheduling

WCET analysis framework for multi-cores
●  A unified WCET analysis framework for multi-cores

●  Assumes TDMA bus scheduling

●  Can deal with shared caches

●  Can also deal with modern processor core features
(exhibiting timing anomalies)

Experimental results

Cache analysis
●  Cache analysis by a combination of abstract interpretation and

model checking

●  Cache analysis: classify memory accesses as hit/miss/unknown,
needed for WCET analysis

●  Abstract interpretation (AI) yields a scalable but somewhat
imprecise analysis

●  Model checking (MC) can give potentially very precise results, but
has scalability problems

●  Idea: First analyze by AI, then refine imprecise parts with MC. Keep
complexity of MC under control by restricting its use to where it
makes a difference

●  Experiments show very good improvements of resulting WCET
estimate

Predictability of caches
●  Fundamental results regarding predictability of cache

replacement strategies

●  Introduced notion of "cache sensitivity" (lasting influence
of initial cache state on cache hits/misses)

●  Computed this for LRU, FIFO, PLRU, MRU

●  Technique: model checking over automaton describing
pairs of possible cache states, and transitions between
pairs for same memory accesses:
(c1,c’1) → (c2,c’2) → (c3,c’3) → ….

●  Sensitivity ratios can be computed for paths in this
transitivity system

Results
●  For LRU, no lasting differences in cache hit/miss ratio

●  For FIFO, PLRU, MRU there are sequences of cache
states where hit/miss ratios also in "steady state" differ
by a factor > 1

●  Implies that difference in execution time can be big due
only to initial cache state

●  Makes it harder to estimate WCET from measurements,
as it becomes very important to find the "worst" initial
cache state

●  The notion of cache-related preemption delay becomes
very dubious for these replacement policies

Hybrid WCET analysis
●  Combines measurements with static analysis

●  Replaces difficult microarchitectural modelling with
measurements of time

●  Unsafe in general, but may be acceptable depending on
requirements

●  Will typically measure time for small program fragments
(basic block level), and then use static analysis
techniques to produce WCET estimate

●  Fine-grained measurements are problematic: large probe
effects, hard to record measured data in real-time, ...

Model identification for hybrid WCET analysis
●  A method to estimate basic-block execution times from

end-to-end measurements

●  Based on a linear timing model. Uses model
identification by linear programming. Resulting model will
never underestimate any observed execution times

●  Allows for context-sensitive basic block execution times
in analysis (increases precision)

●  Evaluation shows WCET overestimation in range 0-10%
on suite of benchmarks

Example

Conclusions

Mapping of applications to MPSoCs
●  Turned an empty landscape into one with several tools with

a different focus: MAPS, DOL, SystemCoDesigner, HOPES

Software Synthesis
●  Linked experts, published papers

Efficient Design: Energy-awareness etc.
Timing analysis:

 Many new insights in timing analysis for multi-core, cache,
timing predictability, identification of timing models

