

Embedded Systems have become more complex,
and characterized by dynamic behavior and distributed
organization

Overall High-Level Objectives and Vision
Provide a more efficient and predictable support (at the OS
and Network level) to the development of future embedded
systems. In particular:

  Allow simple and flexible resource management to cope
with the growing complexity;

  Take advantage of multi-core platforms;

  Support distributed computing to deal with the ubiquitous
nature of the computing infrastructure;

  Increase system adaptivity to react to environmental
changes.

Cluster activities

Resource-Aware Operating Systems

Scheduling and Resource Management

Real-Time Networks

Activity leader: Giorgio Buttazzo
 Scuola Superiore Sant’Anna
 Pisa, Italy

Objectives

Exploit the expertise in the NoE to make
operating systems more

  predictable (in terms of timing behavior)

  efficient (in terms of resource usage)

  robust (to tolerate overload conditions)

  easy to use (to simplify user interface)

Approach
  Investigate novel kernel methodologies

– Resource reservation

– Contract-based scheduling

–  Limited preemptive scheduling

– Energy-aware policies

  Implement these techniques
in existing RTOSes

  Provide appropriate tools

Exploit parallelism

Temporal
isolation

Portability

Real-time
guarantee

Resource
Optimization

Multiple goals

Adaptivity

System model

Core 1 Core 2 Core 3 Core 4

A

τ1 τ2 τ3

τ4
B

τ6 τ7

τ8

τ5

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8

Isolation RT guarantee
Adaptivity

Optimal allocation
Portability

Parallelism can be expressed by using a suitable
dataflow language, like CAL [UC Berkeley, 2003].

  It describes algorithms through a set of modular
components (actors), communicating through I/O ports:

Expressing parallelism

  Actions read input tokens, modify the internal state, and
produce output tokens.

Internal state

Actions

Actor

Application model
  An application can be modeled as a task graph

with precedence relations:

τ1

τ2
τ5

τ3

τ4

Task τi
A sequential
portion of code
that cannot be
further parallelized

A task graph specifies the maximum level of parallelism

 Each application is sporadic:
•  Minimum interarrival time (period) T

•  relative deadline D

 Tasks are fully preemptive

Application parameters:

{C1, C2, C3, C4, C5}, D, T

τ1

τ2

τ3

τ4

τ5

Application model

Achieving Temporal Isolation
Temporal Isolation
Property of a multi-application system in which
the performance of an application does not depend
on the execution of the others.

Resource Reservation

The performance of an application only depends on:
 Its own computational demand;

 The amount of allocated resources.

An isolated application executes as it were
executing alone on a slower dedicated processor of
speed s equal to the reserved fraction.

Advantages
• Predictability: A misbehavior of an application does not
affect the others.

• Modular analysis: RT constraints can be verified
independently of the knowledge of other applications.

Achieving Temporal Isolation

τ1
τ2
τ3

τ1
τ2
τ3

τ1 τ2 τ3

τ1

τ2
τ3

U2

U1

U3

Prioritized
Access

Resource
Reservation

P2

P1

P3

READY QUEUE

50%

30%
20%

Priorities vs. Reservations

τ1
τ2
τ3

τ1
τ2
τ3

Prioritized
Access

Resource
Reservation

50%

30%
20%

Priorities vs. Reservations

Implementing Resource Reservation

CPU

Reservation
server

τ1

τ4

Us1

Us2

Us3

τ2

τ3
Reservation
Scheduler

Reservation
server

Reservation
server

RM
EDF
Static partitions

Polling
Deferrable Server
CBS

Reservation server
A way to implement a reservation is through a
periodic server providing a budget Q every period P:

P
Q

α = Q/P = 4/10 Reserved bandwidth:

α = Q/P = 2/5 Reserved bandwidth:

P

Q

Which one is better?

Reservation server
Observe the worst-case delay:

Δ = 2(P – Q) = 12

Δ = 2(P – Q) = 6

α = Q/P = 4/10 Reserved bandwidth:

α = Q/P = 2/5 Reserved bandwidth:

Hence, two key parameters to describe a reservation
are: α

Δ

Bandwidth:

Worst-case delay:

QoS1

QoS2

QoS3

α1 Δ1

α2 Δ2

α3 Δ3

Abstracting Reservations

dbf(t)

t

αk

Δk

Sk(t)

Real-Time guarantee

Supply function of a reservation

Demand Bound function of an Appln

Guarantee test

Multicore Reservations

• What is a reservation on a multi-core platform?

• Does it make sense to have a bandwidth α > 1?

A multicore reservation cannot be specified
by the overall supplied bandwidth

A multicore reservation must be specified as
a set of uniprocessor reservations

Core 1 Core 2 Core 3 Core 4

0.5 0.2 0.3 0.4 0.2 0.4

Reservation Manager

Partitioning

Applications

Physical
platform

Virtual platform

A

B

Abstracting the platform

Appls

Physical
platform

Virtual
platform

Abstracting the platform

Appls

Physical
platform

Virtual
platform

Abstracting the platform

Appls

Physical
platform

Virtual
platform

Abstracting the platform

Target RTOSes

http://erika.tuxfamily.org/

ERIKA
ENTERPRISE

 Small platforms (1-2 Kbytes)

 OSEK compliance

 PC-like platforms

 POSIX compliance

Both support

 Multi-core platforms

 Resource reservation

 Deadline-based scheduling

http://www.evidence.eu.com/sched_deadline.html

+ SCHED_DEADLINE
EDF	

Deadline Scheduling on Linux (Pisa, Evidence)

Integrating EDF in Linux

SCHED_NORMAL
Task

SCHED_RR
Task

SCHED_FIFO
Task

sched_rt sched_fair sched_edf
 Highest-priority

scheduler

SCHED_EDF
Task

 Completely Fair Scheduler (CFS)

Resource optimization

Partition the application into virtual cores in order
to minimize

 the overall bandwidth

 the active number of processors

 the power consumption

 the maximum finishing time (makespan)

α = Q/P Overhead: σ / P

Actual Bandwidth: B = α + σ/P Δ = 2(P – Q)

B = α + 2σ 1 – α
Δ

Taking overhead into account, it is possible to
compute the (α,Δ) that minimizes B.

Bandwidth minimization

Optimal bandwidth

h2(t) h1(t)

  Once the best (α,Δ) have been computed for each flow,
the total bandwidth required by the application is:

α1

Δ1

α2

Δ2

B1 B2

B = Bk Σ
k=1

m

Search for the best partition

 Different partitions require different bandwidth:

Complete vs. heuristic search
1

1 2 1 2

1 2 3 1 2 3 1 3 2 1 2 3 1 2 3

Pruning is used to cut

  unfeasible branches (Bk > 1)

  redundant branches (m > M) D
Cs

δ M =

Exponential complexity (tractable for n < 20)

Partitioning
Tool

F1

F2

Fm

•
•
•

URL: http://particore.sssup.it/

QoS1

QoS2

QoS3

α1 Δ1

α2 Δ2

α3 Δ3

Adaptivity
•  Achieved through a Reservation Manager that uses

feedback scheduling to deal with dynamic changes:

τ1

τ2

τ3

Reservation Manager

Activity leader: Alan Burns
 University of York
 York, UK

Activity leader: Luis Almeida
 University of Porto
 Portugal

