

Transversal Activity

●  Around half the size of a thematic cluster

●  Axel Jantsch & Martin
Törngren (KTH)

●  Jan Madsen (TU Denmark)

●  Rolf Ernst (TUBraunschweig)

●  Joseph Sifakis (VERIMAG)

●  Alejandro Alonso (UPM)

●  Lucia Lo Bello (UCatania)

●  Pau Martí (UPC)

●  Johan Eker (Ericsson)

●  Liesbeth Steffens (NXP)

Partners
Core Partners:
●  Karl-Erik Årzén (ULUND)

●  Gerhard Fohler (TUKL)

●  Giorgio Buttazzo (SSSA)

●  Luis Almeida (UPorto)

●  Luca Benini (UBologna)

●  Chantal Ykman-Couyvreur (IMEC)

●  Eduardo Tovar (IP Porto)

●  Björn Lisper (MdH)

●  Alan Burns (York)

●  Lothar Thiele (ETH-Z)

●  Hamid Brahim (CEA)

Affiliated Partners:

•  Most partners from the OS and
Networks cluster

•  Hence, most focus on software-based
approaches to adaptation

Contents

●  Motivation
●  Selected Technical Highlights

–  Adaptive Resource Management in
ACTORS

●  Perspectives

Definitions

“An embedded system is adaptive if it is able to adjust
its internal strategies to meet its objectives”

“An embedded system is robust if it meet its
objectives under changing conditions without

modifying its internal strategies”

Why Adaptivity?
●  System complexity increases

●  Complete information about all use cases and their resource
requirements is often not available at design-time

●  Green computing  power consumtion constraints increasingly
important

●  Increased hardware density  thermal constraints increasingly
important

●  Hardware platforms increasingly complex  increasing difficulties in
providing good off-line estimates of resource consumption

●  Hardware variability increasing

●  Increased requirements on dependability

●  Hardware increasingly often allows adaptivity

Some Examples of Adaptivity

Example 1: A multi-mode embedded system where the
resource requirements for all the tasks in all the modes are
known at design time

–  Use schedulability analysis to ensure that the deadlines are met
in all modes and then use a mode-change protocol that ensures
that all deadline also are met during the transition between the
modes

Example 2: An embedded system with a constant set of
hard-RT applications/tasks but where the WCET analysis
possible on the selected hardware is too pessimistic and
leads to too low resource utilization or where the age or
process-induced variability is too large

–  Measure the actual resource consumption and adjust, e.g. the
task rates in order ensure that the schedulability condition is
fulfilled

Examples of Adaptivity
Example 3: Open embedded systems where the number of
applications and their characteristics change dynamically
(e.g, smartphones)

–  Measure resource consumption and decide how much resources
that should be allocated to each application in order to maximize
QoS/QoE while minimizing power consumpotion and avoiding
thermal hotspots

Example 4: A distributed embedded system where we for
dependability reasons must be able to ensure system
functionality also in case of single-node failures

–  Detect node failures and then adapt the task mapping and the
schedules so that the the system performance is still acceptable

Examples of Adaptivity
Example 5: An FPGA-based system with multiple modes
that is too large to fit in a single FPGA or where the power
consumption will be too high

–  Use run-time reconfiguration to change the FPGA function
dynamically

Adaptation Mechanisms

●  Open Loop Adaptation

–  Feedforward
–  Assumes perfect information (model) of the system

–  Assumes that there are no external disturbances

System Adaptation
Mechanism Trigger

event Actuators

Adaptation Mechanisms

●  Closed Loop Adaptation

–  Feedback
–  Adaptation Mechanism == Controller

–  Requires sensors
–  May cause unstabilities

System Adaptation
mechanism

Disturbances

Sensors Actuators

Feedback Loop

Adaptation Formulations
●  Often formulated as an optimization-problem or as a

control-problem

●  Optimization Formulations:

 or

–  Performed off-line, online when some change has occurred or
periodically, off-line+on-line, …

–  ILP, Bin-packing, MILP, QP, NLP (B&B, GA, CP …)
–  Centralized or distributed

maximize/minimize resource-consumption objective
s.t. perfomance constraint

maximize/minimize performance objective
s.t. resource consumption constraint

Adaptation Formulations

●  Control Formulations:
–  System modelled as (linear) dynamic system
–  Classical linear control design

techniques
●  PID
●  LQG
●  ….

–  Designed to obtain a stable closed loop system with desired
dynamic performance

Adaptation Formulations
●  Combined Optimization and Control Formulations:

–  Model-Predictive Control (MPC)
●  Optimization problem solved each sample
●  Only the first control signal is used (receding horizon principle)
●  Optimization problem ban be solved off-line (explicit MPC /

multiparametric programming)  piecewise affine mapping

–  Feedforward + feedback structures

System Adaptation
Controller

Disturbances

Sensors

Feedback Loop

+

Optimization
Feedforward

Δ	

Actuators
●  Change the applications / threads

–  For example:
●  Accept or reject decision
●  Change the rates of periodic processes
●  Task shaping
●  Change between alternative versions (service/quality levels)
●  Anytime formulations

–  Often requires support from the applications

●  Change the mapping of the application onto the
execution platform

–  Priority

–  Schedule
–  Processor allocation

Actuators
●  Change the execution platform

–  Number of processors (virtual or physical)
●  DPM techniques

–  Speed of processors
●  DVFS
●  Change the bandwidth of the VM or bandwidth server

–  Functionality (hardware-based systems)
●  Micro-code in soft-cores
●  FPGA netlist

Sensors
●  What we can (or would we like to) measure?

–  Application performance
●  Obtained QoS
●  Throughput
●  Latency

–  OS / CPU level
●  CPU cycles / task
●  CPU utilization
●  Deadline miss ratio

–  Power and temperature
●  Power consumption for each unit
●  Temperature of each heat source (core, coprocessor, memory

controller, ….)

Models
●  It is unrealistic to assume sensors for everything

●  Must be combined with realistic models that allow us to estimate entities
which we cannot measure

●  Dynamic calibration using sensor readings (Kalman filter / dynamic
observers)

●  Power models:

–  Dynamic and static power consumption

●  Temperature models

–  Heat transfer between cores

–  Active cooling

–  Multi-tier 3D chips

●  Interplay between power and temperature models

–  Temperature dependent leakage power

●  Model parameters through system identification

Problems of Adaptivity

Adaptivity can introduce new problems:
●  The adaptation mechanism itself consumes resources

●  Harder to provide formal guarantees about the system

●  Adds to the complexity

●  May complicate the design process (modeling, V&V, …)

●  Requires tuning

●  Sensors and actuators are necessary

●  Models are necessary
–  Of the system that we adapt

–  Of the adaptation mechanism itself

Contents

●  Motivation

●  Selected Technical Highlights
–  Adaptive Resource Management in

ACTORS

●  Perspectives

Selected Technical Highlights
●  Scheduling:

–  Analysis for dynamically changing task sets (UYork)
●  Maximise the utilisation of the available resources by adapting near

optimal algorithms

–  Task allocation strategies that are robust to changes (UYork)
●  Minimizes the amount of change that has to be done to the system

–  Mode change protocols for bandwidth servers (SSSA, ETHZ)
●  Maintain schedulability and temporal isolation for CBS bandwidth

servers when the server parameters change

–  A new allocation and scheduling approach for parallel tasks
in a soft-real time media processing systems (UNIBO)

●  In the presence of variability on a multi-core platform.
●  Efficient online policy for meeting timing constraints with minimum

energy.

Selected Technical Highlights
●  Memory:

–  Run-time adaptivity of the memory hierarchy within NoC
architectures (UYork)

●  Real-time guarantees in dynamic systems

●  Reduce memory requirements and energy costs

Selected Technical Highlights
●  Run-Time Resource Management:

–  ACTORS (SSSA, TUKL, ULUND, Ericsson)
●  Homogeneous multicore systems
●  Virtualization through CBS servers
●  Optimization (ILP) and control
●  New Linux scheduling class
●  Media processing and control applications

implemented in the CAL dataflow language
●  Complete tool chain including design space exploration,

simulation, model transformation, automatic code generation,
profiling

●  X86, ARM11, ST-Ericsson dev board (Android)
●  Currently adding support for power management

Selected Technical Highlights
●  Run-Time Resource Management:

–  Adaptive resource management for distributed multimedia
systems (IMEC, BARCO)

●  Video clusters

●  BARCO reported a factor 3 reduction in average power consumption,
a factor 5 reduction in hardware cost, and more than a factor 10 in
system size as compared to their current solution.

–  Adaptive resource management (VERIMAG)
●  Multimedia applications with multiple quality levels that impacts the

quality of service (QoS) and the execution times
●  Optimal quality levels computed online
●  Controller that is constantly adapting the chosen quality levels

depending on the actual time and on a combination of average and
worst-case estimates of the execution times

Selected Technical Highlights
●  Run-Time Resource Management:

–  Compile-time and run-time adaptivity for energy and variability
(UYork)

●  Compiled code includes potential for OS to vary applications
behaviour at run-time for achieving better performance

–  Adaptive Service Management (UPM)
●  Adaptation of service request handling behaviour to the specific

requirements of the services
●  CPU contracts to ensure sufficient computation time (modifed Linux)
●  Quality compositions of services at run-time

Selected Technical Highlights
●  Run-Time Analysis:

–  Distributed run-time analysis of embedded systems
(TUBraunschweig)

●  An existing analysis engine has been complemented by a framework
that enables access control and runtime-optimization.

●  Extended with distributed algorithms that allow the usage of self-
configuration services for self-protecting real-time systems.

Selected Technical Highlights
●  Power and Thermal Management:

–  Task shaping to obtain thermal guarantees (ETHZ)
●  Just Sufficient Throttling (JUST)

Selected Technical Highlights
●  Power and Thermal Management:

–  Integrated energy and thermal control (UNIBO)
●  Cascaded control structure
●  Model-Predictive Control

Selected Technical Highlights
●  Frameworks and Reference Architectures:

–  Adaptable Collaboration Framework (IPPorto)
●  Networked embedded systems
●  Allows constrained devices to collaborate with more powerful or less

congested peers
●  Trade-off computation time and resource usage against quality

–  DySCAS - Dynamically Self-Configuring Automotive Systems
(KTH, ++)

●  A reference middleware architecture for automotive embedded
systems

●  Run-time support for the fusion of monitored context
data, the resolution of conflicts and configuration
variations, and the execution of dynamic adaptations
(QoS changes and migrations)

Selected Technical Highlights
●  Sensor Networks:

–  Adaptive energy management (ETHZ, UNIBO)
●  Sensor networks with solar cell-based energy harvesting
●  Adaptation of application parameters based on a prediction of future

energy availability
●  Optimization problem solved using multiparametric programming
●  Optimal task scheduling using both time and energy constraints

●  Adaptive Networking:
–  Communication channel adaptation (UPorto)

●  Virtual channels with adaptable bandwidth and latency through the
Flexible Time-Triggered (FTT) approach over switched Ethernet

●  Adaptive TDMA that adapts its phase to escape interfering traffic

Selected Technical Highlights

●  Control Techniques:
–  Optimization of the timing parameters of real-time control tasks

(SSSA)
–  New feedback scheduling techniques (UPC)

–  New event-based control techniques (ULUND, UPC)

●  WCET Analysis:
–  Parametric WCET analysis (MDH)

●  Bounds as a function of input values
●  To be used in adaptive real-time systems

where the task scheduling adapts to external
factors

●  Analysis packaged in the SWEET tool
WCET(n) ≤ if n ≥ 11: 190n - 530
 if 0 < n ≤ 10: 140n - 20
 otherwise: 20

Selected Technical Highlights
●  Programmable Hardware:

–  eDNA architecture (DTU)
●  Ultra fault-tolerant FPGA
●  Multiple processors (cells) connected through NoC
●  Programmed via eDNA (electronic DNA), a behavioural spec of the

user algorithm encoded in a binary format
●  Cells self-organize by translating the eDNA into tasks and maps them

●  In case of faults the self-organization algorithm is re-run
●  NASA JPL collaboration
●  Commercialized through spin-off company

Contents

●  Motivation

●  Selected Technical Highlights
–  Adaptive Resource Management

in ACTORS

●  Perspectives

Feedback-Based Resource Management
●  ACTORS – Adaptivity and Control of Resources

in Embedded Systems

–  Ericsson (coord), SSSA, TUKL, Lund, EPFL, Akatech,
Evidence

●  Levels:

–  Applications: CAL Dataflow Language

–  Resource Manager

–  Operating System: SCHED_EDF Linux scheduler
(hard CBS) and Linux CFS scheduler

●  Demonstrators

–  Media streaming on cellular phones, control, high-performance
video

●  Platforms: ARM 11 & x86 multicore with Linux > 2.6.26

Dataflow Modeling
●  Data flow programming with actors

●  CAL Actor Language (UC Berkeley, Xilinx) http://opendf.org
–  Part of MPEG/RVC

Dataflow Execution
●  Best-effort scheduling with dynamic processor allocation

for dynamic CAL applications on multi-core platforms

Off-line Partitioning

Worker
Thread

Worker
Thread

Virtual
Processor

Virtual
Processor

Core Core

Generic multi-core run-time
system developed:
•  memory barriers
•  cache aware

Overview

SCHED_EDF scheduler
•  Partitioned multi-core scheduler
•  Hard CBS Reservations

Resource Manager
•  C++ framework
•  DBus IPC to application
•  Control groups API to scheduler

•  CAL Dataflow Applications
•  Legacy applications through
 wrapper

DBus
interface

Control
Groups

interface

Static Information

Service Level QoS BW Requirement BW distribution Timing
Granularity

0 100 240 60-60-60-60 20 ms

1 75 180 45-45-45-45 20 ms

2 40 120 30-30-30-30 20 ms

Appl. Importance

Appl 1 10

Appl 2 20

Appl 3 100

Default 10

From applications to RM at registration:
 - Service Level Table

 - Thread IDs and how they should be grouped

From system administrator to RM at startup:

Dynamic Inputs

Used Budget (Bandwidth):
•  average used budget

Exhaustion Percentage:
•  percentage of server periods in which the
 budget was exhausted

Happiness:
•  boolean indicator of whether the QoS
 obtained correspond to what could be
 expected at the current service level

Outputs

Current Service Level

Reservation Parameters:
•  Budget
•  Period
•  Affinity

Resource Manager Tasks

●  Assign service levels
–  When applications register or unregister

●  Mapping & bandwidth distribution
–  Map virtual cores to physical cores

●  Bandwidth adaptation
–  Adjust the server budgets dynamically

based on measured resource usage
and obtained
happiness

ILP Problem

Bin-Packing Problem

Demonstrators

●  Video Quality Adaptation
–  MPEG-2 and MPEG-4 frames
–  TUKL

●  Control demonstrator
–  Industrial robot balancing

inverted pendulum
–  Ball and Beam Processes
–  ULUND

●  Image Processing
–  HW and/or SW mapping

–  EPFL

Video

Contents

●  Motivation

●  Selected Technical Highlights

●  Perspectives

Insights Gained

Adaptivity in embedded systems covers a wide range of
subjects.

Hence, to develop a common theoretical basis for
adaptivity in embedded systems is extremely challenging.

The work performed within ArtistDesign can merely be
considered as a starting point for this.

Insights Gained

In order to move adaptivity from the research community to
industrial practice it is essential that adequate support for
adaptivity is included in COTS software and hardware,
including OS and middleware. This include

●  sensing and actuation mechanisms.

●  models (thermal, battery, power, …) with correct
parameters

●  adaptivity API between applications and OS/middleware

Insights Gained

There is a fundamental trade off between adaptivity and
predictability. Hence, for applications with severe
requirements on predictability, adaptive mechanisms are
less suitable.

Furthermore, adaptivity makes formal verification more
difficult

  So maybe it is not suitable for hard RT, time-critical
systems?

 Or?

As soon as fault tolerance and reconfigurability becomes
design requirements we have in essence adaptivity

Insights Gained

1) The adaptation mechanisms must be very resource
efficient.

2) The requirements which they pose on the applications
and the knowledge they require about the applications must
be small.

The adaptation mechanisms must be quite simple in order
to be practically useful.

Insights Gained
The thermal control, power control, and performance

control needed in multi/many-core embedded systems
have very strong relationships with the same problems in

data centers.

Insights Gained

A unified approach to resource management of computing
systems is a realistic future goal

Small Embedded
 Systems

Data Centers

Desktop Systems MPSoCs 3D Multi-Tier

Server Systems

The Cloud

Questions?

