
Foundations and TrendsR© in
Journal Title
Vol. 1, No 1 (2005) 1–177
c© 2005 L. P. Carloni, R. Passerone, A. Pinto, A. L.

Sangiovanni-Vincentelli

now
the essence of knowledge

Languages and Tools for Hybrid Systems
Design

Luca P. Carloni1, Roberto Passerone2, Alessandro
Pinto3 and Alberto L. Sangiovanni-Vincentelli4

1 Department of Computer Science, Columbia University, 1214Amsterdam
Avenue, Mail Code 0401, New York, NY 10027, USA, luca@cs.columbia.edu

2 Cadence Berkeley Laboratories, 1995 University Ave Suite 460, Berkeley, CA
94704, USA, robp@cadence.com

3 Department of EECS, University of California at Berkeley, Berkeley, CA 94720,
USA, pinto@eecs.berkeley.edu

4 Department of EECS, University of California at Berkeley, Berkeley, CA 94720,
USA, alberto@eecs.berkeley.edu

Contents

1 Introduction 1

2 Foundations 6

2.1 Formal Definition of Hybrid Systems 6
2.2 Examples 10

3 Tools for Simulation 17

3.1 Simulink and Stateflow 18
3.2 Modelica 31
3.3 HyVisual 44
3.4 Scicos 52
3.5 Shift 64
3.6 Charon 75

4 Tools for Formal Verification 87

4.1 Introduction to Verification Methods 90

1

2 Contents

4.2 Hytech 93
4.3 PHAVer 102
4.4 HSolver 109
4.5 Masaccio 115
4.6 CheckMate 121
4.7 Ellipsoidal Calculus for Reachability 129
4.8 d/dt 132
4.9 Hysdel 137

5 Comparative Summary 150

6 The Future: Towards the Development of a Standard
Interchange Format 156

6.1 Semantic-Free and Semantically-Inclusive Interchange
Formats in EDA. 157

6.2 The Hybrid System Interchange Format. 159
6.3 Requirements for a Standard Interchange Format. 160
6.4 Metropolis-based abstract semantics for Hybrid Systems. 162
6.5 Conclusions. 164

Acknowledgements 166

References 167

1
Introduction

With the rapid advances in implementation technology, designers are given
the opportunity of building systems whose complexity far exceeds the in-
crease in rate of productivity afforded by traditional design paradigms. De-
sign time has thus become the bottleneck for bringing new products to market.
The most challenging designs are in the area of safety-critical embedded sys-
tems, such as the ones used to control the behavior of transportation systems
(e.g., airplanes, cars, and trains) or industrial plants. The difficulties reside in
accommodating constraints both on functionality and implementation. Func-
tionality has to guarantee correct behavior under diverse states of the environ-
ment and potential failures; implementation has to meet cost, size, and power
consumption requirements.

When designing embedded systems of this kind, it is essential to take all
effects, including the interaction between environment (plant to be controlled)
and design (digital controller), into consideration. Thiscalls for methods that
can deal with heterogeneous components exhibiting a variety of different be-
haviors. For example, digital controllers can be represented mathematically
as discrete event systems, while plants are mostly represented by continuous
time systems whose behavior is captured by partial or ordinary differential
equations. In addition, the complexity of the plants is suchthat representing

1

2 Introduction

them at the detailed level is often impractical or even impossible. To cope
with this complexity, abstraction is a very powerful method. Abstraction con-
sists in eliminating details that do not affect the behaviorof the system that
we may be interested in. In both cases, different mathematical representations
have to be mixed to analyze the overall behavior of the controlled system.

There are many difficulties in mixing different mathematical domains.In
primis, the very meaning of interaction may be challenged. In fact,when het-
erogeneous systems are interfaced, interface variables are defined in different
mathematical domains that may be incompatible. This aspectmakes verifi-
cation and synthesis impossible, unless a careful analysisof the interaction
semantics is carried out.

In general, pragmatic solutions precede rigorous approaches to the solu-
tion of engineering problems. This case is no exception. Academic institu-
tions and private software companies started developing computational tools
for the simulation, analysis, and implementation of control systems (e.g.,
SIMULINK , STATEFLOW and MATLAB from The Mathworks), by first de-
ploying common sense reasoning and then trying a formalization of the basic
principles. These approaches focused on a particular classof heterogeneous
systems: systems featuring the combination of discrete-event and continuous-
time subsystems. Recently, these systems have been the subject of intense
research by the academic community because of the interesting theoretical
problems arising from their design and analysis as well as ofthe relevance
in practical applications [2, 95, 136]. These systems are called hybrid sys-
tems[12, 14, 17, 18, 19, 20, 33, 82, 101, 134, 135, 137, 141, 164, 169].

Hybrid systems have proven to be powerful design representations for
system-level design. While SIMULINK , STATEFLOW and MATLAB together
provide excellent practical modeling and simulation capability for the design
capture and the functional verification via simulation of embedded systems,
there is a need for a more rigorous and domain-specific analysis as well as
for methods to refine a high-level description into an implementation. There
is a wealth of tools and languages that have been proposed over the years to
handle hybrid systems. Each tool or language is based on somewhat different
notions of hybrid systems and on assumptions that make a faircomparison
difficult. In addition, sharing information among tools is almost impossible
at this time, so that the community cannot leverage maximally the substantial
amount of work that has been directed to this important topic.

3

In this paper, we collected data on available languages, formalism and
tools that have been proposed in the past years for the designand verifica-
tion of hybrid systems. We review and compare these tools by highlighting
their differences in the underlying semantics, expressivepower and solution
mechanisms. Table 1 lists tools and languages reviewed in this paper with
information on the institution that supports the development of each project
as well as pointers to the corresponding web site1 and to some relevant pub-
lications.

The tools are covered in two main sections: one dedicated to simulation-
centric tools including commercial offerings, one dedicated to formal
verification-centric tools. The simulation-centric toolsare the most popular
among designers as they pose the least number of constraintson the sys-
tems to be analyzed. On the other hand, their semantics are too general to be
amenable to formal analysis or synthesis. Tools based on restricted expres-
siveness of the description languages (see, for example, the synthesizable
subset of RTL languages as a way of allowing tools to operate on a more
formal way that may yield substantial productivity gains) do have an appeal
as they may be the ones to provide the competitive edge in terms of quality
of results and cost for obtaining them. The essence is to balance the gains in
analysis and synthesis power versus the loss of expressive power.

We organized each section describing a tool in

(1) a brief introduction to present the tool capabilities, the organiza-
tions supporting it and how to obtain the code;

(2) a section describing the syntax of the language that describes the
system to be analyzed;

(3) a section describing the semantics of the language;
(4) the application of the language and tool to two examples that have

been selected to expose its most interesting features;
(5) a discussion on its pros and cons.

1George Pappas research group at Univ. of Pennsylvania is maintaining a WikiWikiWeb site at
http://wiki.grasp.upenn.edu/ graspdoc/hst/ whose objective is to serve as a community
depository for software tools that have been developed for modeling, verifying, and designing hybrid
and embedded control systems. It provides an “evolving” point of reference for the research community
as well as potential users of all available technology and itmaintains updated links to online resources
for most of the tools listed on Table 1.

4 Introduction

Name Institution Web Page References Section

CHARON Univ. of Pennsylvania www.cis.upenn.edu/mobies/charon/ [3, 4, 8] 3.6
CHECKMATE Carnegie Mellon Univ. www.ece.cmu.edu/ ∼webk/checkmate/ [153] 4.6
d/dt Verimag www-verimag.imag.fr/ ∼tdang/Tool-ddt/ddt.html [56, 21, 22] 4.8
DYMOLA Dynasim AB www.dynasim.se/ [69] 3.2
ELLIPSOIDAL TOOLBOX UC Berkeley www.eecs.berkeley.edu/ ∼akurzhan/ellipsoids/ [116, 123, 122] 4.7
HSOLVER Max-Planck-Institut www.mpi- inf.mpg.de/ ∼ratschan/hsolver/ [149] 4.4
HYSDEL ETH Zurich www.control.ee.ethz.ch/ ∼hybrid/hysdel/ [167, 166] 4.9
HYTECH Cornell, UC Berkeley www-cad.eecs.berkeley.edu/ ∼tah/HyTech [11, 91, 98] 4.2
HYV ISUAL UC Berkeley ptolemy.eecs.berkeley.edu/hyvisual [106] 3.3
MASACCIO UC Berkeley www.eecs.berkeley.edu/ ∼tah [100] 4.5
MATISSE Univ. of Pennsylvania wiki.grasp.upenn.edu/ ∼graspdoc/hst/ [74, 75] 4
MODELICA Modelica Association www.modelica.org [73, 163, 72] 3.2
PHAVER VERIMAG www.cs.ru.nl/ ∼goranf/ [71] 4.3
SCICOS INRIA www.scicos.org [66, 144] 3.4
SHIFT UC Berkeley www.path.berkeley.edu/shift [63, 64] 3.5
SIMULINK The MathWorks www.mathworks.com/products/simulink [15, 55, 150] 3.1
STATEFLOW The MathWorks www.mathworks.com/products/stateflow [15, 55, 150] 3.1
SYNDEX INRIA www-rocq.inria.fr/syndex [80, 81] 3.4

Table 1.1 References for the various modeling approaches, toolsets.

In the last part of the paper we provide a comparative summaryof the
hybrid system tools that we have presented. The resulting landscape appears
rather fragmented. This suggests the need for a unifying approach to hybrid
systems design. As a step in this direction, we make the case for asemantic-
aware interchange format. Today, re-modeling the system in another tool’s
modeling language, when (at all) possible, requires substantial manual ef-
fort and maintaining consistency between models is error-prone and difficult
in the absence of tool support. The interchange format, instead, would en-
able the use of joint techniques, make a formal comparison between different
approaches possible, and facilitate exporting and importing design represen-
tations. The popularity of MATLAB , SIMULINK , and STATEFLOW implies
that significant effort has already been invested in creating a large model-
base in SIMULINK /STATEFLOW. It is desirable that application developers
take advantage of this effort without foregoing the capabilities of their own
analysis and synthesis tools. We believe that the future will be in automated
semantic translators that, for instance, can interface with and translate the
SIMULINK /STATEFLOW models into the models of different analysis and
synthesis tools.

Paper organization.In Chapter 2, we lay the foundation for the analysis.
In particular, we review the formal mathematical definitionof hybrid systems
(Section 2.1) and we define two examples (Section 2.2), a system of three
point masses and a full wave rectifier, which will be used to compare and ex-
plain the tools and languages presented in this paper. In Chapter 3 we intro-
duce and discuss the most relevant tools for simulation and design of hybrid
and embedded systems. With respect to the industrial offering, we present

5

the SIMULINK /STATEFLOW design environment, the MODELICA language,
and the modeling and simulation tool DYMOLA based on it. Among the aca-
demic tools, we summarize the essential features of SCICOS, SHIFT, HYV I-
SUAL and CHARON, a tool that is the bridge between the simulation tools
and the formal verification tools as it supports both (although the verification
component of CHARON is not publicly available). In Chapter 4, we focus
on tools for formal verification of hybrid systems. In particular, we discuss
HYTECH, PHAVER, HSOLVER, MASACCIO, CHECKMATE, d/dt and HYS-
DEL. The last two can also be used to synthesize a controller thatgoverns
the behavior of the system to follow desired patterns. We also summarize
briefly tools based on the ellipsoidal calculus like ELLIPSOIDAL TOOLBOX.
In Chapter 5 we give a comparative summary of the design approaches, lan-
guages, and tools presented throughout this paper. To end inChapter 6, we
offer a discussion and a plan on the issues surrounding the construction of the
interchange format.

2
Foundations

In this chapter, we discuss a general formal definition of hybrid systems as
used in the control community. Most models used in the control community
can be thought of as special cases of this general model. Then, we present two
examples, which will be used in the rest of this paper to evaluate and compare
different tools and languages for hybrid systems.

2.1 Formal Definition of Hybrid Systems

The notion of a hybrid system traditionally used in the control community is
a specific composition of discrete and continuous dynamics.In particular, a
hybrid system has a continuous evolution and occasional jumps. The jumps
correspond to the change of state in an automaton that transitions in response
to external events or to the continuous evolution. A continuous evolution is
associated to each state of the automaton by means of ordinary differential
equations. The structure of the equations and the initial condition may be
different for each state. While this informal description seems rather simple,
the precise definition of the evolution of the system is quitecomplex.

Early work on formal models for hybrid systems includesphase transi-
tion systems[2] andhybrid automata[136]. These somewhat simple models

6

2.1. Formal Definition of Hybrid Systems 7

were further generalized with the introduction of compositionality of parallel
hybrid components inhybrid I/O automata[133] andhybrid modules[9]. In
the sequel, we follow the classic work of Lygeros et al. [132]to formally de-
scribe a hybrid system as used in the control literature. We believe that this
model is sufficiently general to form the basis of our work in future chapters.

We consider subclasses of continuous dynamical systems over certain
vector fieldsX, U andV for the continuous state, the input and disturbance,
respectively. For this purpose, we denote withUC the class of measurable in-
put functionsu : R → U , and withUd the class of measurable disturbance
functionsδ : R → V . We use the symbolSC(X,U, V) to denote the class of
continuous time dynamical systems defined by the equation

ẋ(t) = f(x(t), u(t), δ(t))

wheret ∈ R, x(t) ∈ X andf is a function such that for allu ∈ UC and for
all δ ∈ Ud, the solutionx(t) exists and is unique for a given initial condition.
A hybrid system can then be defined as follows

Definition 1 (Hybrid System). A continuous time hybrid system is a tuple
H = (Q,UD, E,X,U, V,S, Inv,R,G) where:

• Q is a set of states;
• UD is a set of discrete inputs;
• E ⊂ Q × UD × Q is a set of discrete transitions;
• X,U andV are the continuous state, the input and the disturbance,

respectively;
• S : Q → SC(X,U, V) is a mapping associating to each discrete

state a continuous time dynamical system;
• Inv : Q → 2X×UD×U×V is a mapping calledinvariant;
• R : E × X × U × V → 2X is the reset mapping;
• G : E → 2X×U×V is a mapping calledguard.

Note that we can similarly definediscrete timehybrid systems by simply
replacingR with Z for the independent variable, and by considering classes
of discrete dynamical systems underlying each state. The triple (Q,UD, E)

can be viewed as an automaton having state setQ, inputsUD and transitions

8 Foundations

defined byE. This automaton characterizes the structure of the discrete tran-
sitions. Transitions may occur because of a discrete input event fromUD,
or because the invariant inInv is not satisfied. The mappingS provides the
association between the continuous time definition of the dynamical system
in terms of differential equations and the discrete behavior in terms of states.
The mappingR provides the initial conditions for the dynamical system upon
entering a state.

The transition and dynamical structure of a hybrid system determines a
set ofexecutions. These are essentially functions over time for the evolution
of the continuous state, as the system transitions through its discrete structure.
To highlight the discrete structure, we introduce the concept of a hybrid time
basis for the temporal evolution of the system, following [132].

Definition 2 (Hybrid Time Basis). A hybrid time basisτ is a finite or an
infinite sequence of intervals

Ij = {t ∈ R : tj ≤ t ≤ t′j}, j ≥ 0

wheretj ≤ t′j andt′j = tj+1.

LetT be the set of all hybrid time bases. An execution of a hybrid system can
then be defined as follows.

Definition 3 (Hybrid System Execution). An executionχ of a hybrid sys-
temH, with initial stateq̂ ∈ Q and initial conditionx0 ∈ X, is a collection
χ = (q̂, x0, τ, σ, q, u, δ, ξ) whereτ ∈ T , σ : τ → UD, q : τ → Q, u ∈ UC ,
δ ∈ Ud andξ : R × N → X satisfying:

(1) Discrete evolution:

• q(I0) = q̂;

• for all j, ej = (q(Ij), σ(Ij+1), q(Ij+1)) ∈ E;

(2) Continuous evolution: the functionξ satisfies the conditions

• ξ(t0, 0) = x0;

• for all j and for allt ∈ Ij,

ξ(t, j) = x(t)

2.1. Formal Definition of Hybrid Systems 9

where x(t) is the solution at timet of the dynamical
systemS(q(Ij)), with initial condition x(tj) = ξ(tj , j),
given the input functionu ∈ UC and disturbance function
δ ∈ Ud;

• for all j, ξ(tj+1, j + 1) ∈ R
(
ej , ξ(t

′
j , j), u(t′j), v(t′j)

)

• for all j and for allt ∈
[
tj, t

′
j

]
,

(ξ(t, j), σ(Ij), u(t), v(t)) ∈ Inv (q(Ij))

• if τ is a finite sequence of lengthL+ 1, andt′j 6= t′L, then
(
ξ(t′j , j), u(t′j), v(t′j)

)
∈ G (ej)

We say that the behavior of a hybrid system consists of all theexecu-
tions that satisfy Definition 3. The constraint on discrete evolution ensures
that the system transitions through the discrete states according to its tran-
sition relationE. The constraints on the continuous evolution, on the other
hand, require that the execution satisfies the dynamical system for each of
the states, and that it satisfies the invariant condition. Note that when the in-
variant condition is about to be violated, the system must take a transition to
another state where the condition is satisfied. This impliesthe presence of an
appropriate discrete input. Because a system may not determine its own in-
puts, this definition allows for executions with blocking behavior. When this
is undesired, the system must be structured appropriately to allow transitions
under any possible input in order to satisfy the invariant.

Note also that the same input may induce different valid executions. This
is possible because two or more trajectories in the state machine may satisfy
the same constraints. When this is the case, the system is non-deterministic.
Non-determinism is important when specifying incomplete systems, or to
model choice or don’t care situations. However, when describing implemen-
tations, it is convenient to have a deterministic specification. In this case, one
can establish priorities among the transitions to make surethat the behavior
of the system under a certain input is always well defined. Failure to take all
cases of this kind into account is often the cause of the inconsistencies and
ambiguities in models for hybrid systems.

10 Foundations

y

v1
m2m1

x2,0

x3,0

h

x

m3

Fig. 2.1 The system with three point masses.

Definition 4. A hybrid system execution is said to be (i) trivial ifτ = {I0}

andt0 = t′0; (ii) finite if τ is a finite sequence; (iii) infinite ifτ is an infinite
sequence and

∑∞
j=0 t′j−tj = ∞; (iv) Zeno, ifτ is infinite but

∑∞
j=0 t′j−tj <

∞.

In this paper, we are particularly concerned with Zeno behaviors and with
simultaneous events and non-determinism, since differentmodels often differ
in the way these conditions are handled.

2.2 Examples

Comparing tools and languages is always difficult. To make the compari-
son more concrete, we selected two examples that are simple enough to be
handled yet complex enough to expose strength and drawbacks. This section
describes in detail the two examples (a system of three pointmasses and a
full wave rectifier) by using the notation introduced in Section 2.1.

2.2.1 Three-mass system

We consider a system (Figure 2.1) where three point masses,m1, m2 andm3,
are disposed on a frictionless surface (a table) of lengthL and heighth. Mass
m1 has initial velocityv1,0 while the other two masses are at rest. Massm1

2.2. Examples 11

m1moving m1-m2

m2-m3

m3bounce m2bounce

m1bounce

C12

C12

C23

C23

C12

F2

F3

B2

B3

C12

F3
B3

F1

B1

B3
B3

B2

F2

B3 B2

F1

B1

B1

B2

Fig. 2.2 The hybrid system modeling the three point masses.

eventually collides withm2 which, in turn, collides withm3. Consequently,
massm3 falls from the table and starts bouncing on the ground. This system
is not easy to model exactly [142], therefore we make some simplifying as-
sumptions. Each collision is governed by the Newton’s collision rule and the
conservation of momentum. Letm1 andm2 be two colliding masses. Letvi

andv+
i denote the velocity before and after the collision, respectively. Then,

Newton’s rule states thatv+
1 − v+

2 = −ε(v1 − v2), whereε is called the
coefficient of restitution, which describes the loss of kinetic energy due to
the collision. The conservation of momentum is the other equation that de-
termines the velocities after the impact:m1(v

+
1 − v1) = m2(v2 − v+

2). A
collision betweenm1 andm2 happens whenx1 ≥ x2 andv1 > v2, in which
case the velocities after collisions are:

v+
1 = v1

(m1 − εm2)

m1 + m2
+ v2

m2(1 + ε)

m1 + m2

v+
2 = v1

(1 + ε)m1

m1 + m2
+ v2

(m2 − εm1)

m1 + m2

We assume thatx2,0 < x3,0.
Different tools provide different features to model hybridsystems and

12 Foundations

Label Guard Reset

C12 x1 ≥ x2 ∧ vx1 > vx2 vx1 = vx+
1 ∧ vx2 = vx+

2

C23 x2 ≥ x3 ∧ vx2 > vx3 vx2 = vx+
2 ∧ vx3 = vx+

3

F1 x1 ≥ L ∧ y1 > 0 ∧ vx1 > 0 ay1 = −g

F2 x2 ≥ L ∧ y2 > 0 ∧ vx2 > 0 ay2 = −g

F3 x3 ≥ L ∧ y3 > 0 ∧ vx3 > 0 ay3 = −g

B1 y1 ≤ 0 ∧ vy1 < 0 vx1 = γxvx1 ∧ vy1 = −γyvy1

B2 y2 ≤ 0 ∧ vy2 < 0 vx2 = γxvx2 ∧ vy2 = −γyvy2

B3 y3 ≤ 0 ∧ vy3 < 0 vx3 = γxvx3 ∧ vy3 = −γyvy3

Table 2.1 Guard conditions and reset maps for the hybrid system of Figure 2.2

there are many ways of modeling this particular system. For instance, each
point mass could be modeled as an independent system that only implements
the laws of motion. A discrete automaton could be superimposed to the three
dynamics to force discrete jumps in the state variables due to collisions and
bounces. A possible hybrid system model is shown in Figure 2.2, where the
position and velocity of each mass are chosen as state variables. LabelsCij

represent guards and reset maps in the case of a collision between massi and
massj. LabelsFi represent guards and reset maps when massi falls from the
table. Finally, labelsBi represent guards and reset maps when massi bounces
on the ground. The coefficientsγx andγy model the loss of energy on thex
andy directions due to the bounce. We assume that in each state theinvariant
is the conjunction of the complement of the guards on the output transitions
(or, equivalently, that guards have an “as is” semantics). Guard conditions and
reset maps for each transition are listed in Table 2.1.

The system behavior starts with all the masses on the table. All accel-
erations are set to zero,yi = h, i = 1, 2, 3 (all masses on the table top),
xi = xi,0, i = 2, 3 andx1 = 0. Also, m1 is initially moving with veloc-
ity v1,0 > 0 while the other two masses have zero initial velocity. Massm1

moves to the right and collides withm2 (statem1 −m2). Massm2, after col-
lision, moves to the right and collides withm3 (statem2 − m3). Eventually
m3 falls off the table (transitionF3) and starts bouncing (statem3 − bounce

and transitionsB3). We consider both a vertical and horizontal loss of energy
in the bounce as to denote that the surface aty = 0 manifest some friction.
While m3 bounces on the ground, the other two masses (depending on the

2.2. Examples 13

vout

+

+

vin

vin

D2

C

i2

i1

D1

va1 vk1

vk2va2

L

L1

L2

Fig. 2.3 A full wave rectifier circuit.

values ofm1, m2 andm3) can either stop on the table or eventually fall off
and bounce. In each state, the dynamics is captured by a set oflinear differ-
ential equations. If we denote the horizontal and vertical components of the
velocity and of the acceleration byvx, ax andvy, ay, then the equations are:
dvxi/dt = axi, dxi/dt = vxi, dvyi/dt = ayi, dyi/dt = vyi.

The three-mass system shows interesting simulation phenomena. When
x3.0 = L (mass number 3 is positioned at the very edge of the table), three
events occur at the same time:m2 collides withm3 and then both masses
fall (event iteration). Even if events happen simultaneously, they are sequen-
tially ordered. This is the main reason for having several states with the same
dynamics. A hybrid system with only one state would be non-deterministic
and incapable of ordering events in the proper way. Whenm2 andm3 fall at
the same time, they also bounce at the same time, which makes the hybrid
automaton non-deterministic since the bouncing events canbe arbitrarily or-
dered. Finally, this systems is Zeno because at leastm3 will eventually fall
and it’s behavior becomes the one of a bouncing ball.

2.2.2 Full wave rectifier

Our second example, shown in Figure 2.3, is a full wave rectifier, which is
used to obtain a constant voltage source starting from a sinusoidal one. Let

14 Foundations

vin = A sin(2πf0t) be the input voltage. The idea behind this circuit is very
simple: whenvin > 0, diodeD1 is in forward polarization whileD2 is in
reverse polarization; whenvin < 0, diodeD2 is in forward polarization while
D1 is in reverse polarization. In both cases the current flows inthe load in
the same direction. Diodes are modeled by two states. In the off state, i.e.
vai − vki ≤ vγ , the current flowing through them is equal to−I0. In the on

state, i.e.vai − vki ≥ vγ , the current is equal toI0e
vai−vki

VT . The currents in
the two diodes depend onvout, which depends on the sum of the two currents.
We model the diode as a resistor of value0.1Ω in forward polarization and
as an independent current source of value−I0A in backward polarization.
We have two candidates for the loadL: L1 is a pure resistor whileL2 is the
parallel connection of a resistor and a capacitor. When the load is the pure
resistorL1 we observe the algebraic loopvout → ii → vout. In order to
determinevout(t) at timet the values ofi1(t) andi2(t) must be known but
they depends on the valuevout(t) at the very same time. If the load is the
parallel composition of a resistor and a capacitorL2, thenvout is the solution
of a differential equation and the algebraic loop problem disappear because
the derivative operator acts as a delay in a loop of combinational operators.

Figure 2.4 shows the discrete automaton representing the full-wave recti-
fier system. There are fours states, representing the different working condi-
tion combinations of the two diodes. In all four cases, the continuous dynam-
ics for the voltages is described by the following equations:

vin = sin(2πft)

v̇out = −
vout

RC
+

i1 + i2
C

v1 = vin − vout

v2 = −vin − vout

The dynamics for the currentsi1 andi2 and the invariant conditions for each
state are as follows:

• OnOn: both diodes are on. The continuous dynamics is described
by the additional equations:

i1 = v1/Rf

i2 = v2/Rf

2.2. Examples 15

v2 < 0 ∧ v1 ≥ 0

OnOff OffOff

OffOnOnOn

v1 < 0 ∧ v2 ≥ 0

v1 ≥ 0 ∧ v2 ≥ 0

v1 < 0 ∧ v2 < 0

v2 < 0 ∧ v1 ≥ 0

v1 ≥ 0 ∧ v2 ≥ 0

v2 < 0 ∧ v1 ≥ 0

v1 < 0 ∧ v2 < 0

v1 ≥ 0 ∧ v2 ≥ 0

v1 < 0 ∧ v2 ≥ 0

v1 < 0 ∧ v2 < 0

v1 < 0 ∧ v2 ≥ 0

Fig. 2.4 A full wave rectifier hybrid system model.

and the invariant isv1 ≥ 0 ∧ v2 ≥ 0.
• OnOff: d1 is on andd2 is off. The continuous dynamics is described

by the additional equations:

i1 = v1/Rf

i2 = −I0

and the invariant isv1 ≥ 0 ∧ v2 < 0.
• OffOn: d2 is on andd1 is off. The continuous dynamics is described

by the additional equations:

i1 = −I0

i2 = v2/Rf

and the invariant isv1 < 0 ∧ v2 ≥ 0.
• OffOff: both diodes are off. The continuous dynamics is described

16 Foundations

by the additional equations:

i1 = −I0

i2 = −I0

and the invariant isv1 < 0 ∧ v2 < 0.

3
Tools for Simulation

Historically, the first computer tool to be used for designing complex systems
has been simulation. Simulation substitutes extensive testing after manufac-
turing and, as such, it can reduce design costs and time. Of course, the degree
of confidence in the correctness of the design is limited as unpredicted inter-
actions with the environment go unchecked since the input size is too large to
allow for exhaustive analysis.

The design of hybrid systems is no exception and the most used
and popular tools are indeed simulation based. In this domain, there are
strong industrial offerings that are widely used: first and foremost the
SIMULINK /STATEFLOW toolset that has become thede facto standardin
industry for system design capture and analysis. The MODELICA language
with the DYMOLA simulation environment is also popular and offers a solid
toolset. Together with these industrial tools, there are freely available ad-
vanced tools developed in academia that are getting attention from the hybrid
system community. HYV ISUAL recently developed at U.C. Berkeley, SCICOS

developed at INRIA, SHIFT also developed at U.C. Berkeley and CHARON

developed at University of Pennsylvania are reviewed here.CHARON is actu-
ally a bridge to the formal verification domain as it offers not only simulation
but also formal verification tools based on the same language.

17

18 Tools for Simulation

Each of the tools under investigation in this chapter is characterized by the
language used to capture the design. While SIMULINK /STATEFLOW, MOD-
ELICA and SCICOS offer a general formalism to capture hybrid systems
(hence their expressive power is large), the properties of the systems cap-
tured in these languages are difficult to analyze. The CHARON language is
more restrictive but, because of this, offers an easier pathto verification and,
in fact, the same input mechanism is used for the formal verification suite.

3.1 Simulink and Stateflow

In this section, we describe the data models of SIMULINK and STATEFLOW.
The information provided below is derived from the SIMULINK documenta-
tion as well as by “reverse engineering” SIMULINK /STATEFLOW models.1

SIMULINK and STATEFLOW are two interactive tools that are integrated
within the popular MATLAB environment for technical computing marketed
by The MathWorks. MATLAB integrates computation, visualization, and pro-
gramming in an easy-to-use environment where problems and solutions are
expressed in familiar mathematical notation. SIMULINK is an interactive tool
for modeling and simulating nonlinear dynamical systems. It can work with
linear, nonlinear, continuous-time, discrete-time, multi-variable, and multi-
rate systems. STATEFLOW is an interactive design and development tool for
complex control and supervisory logic problems. STATEFLOW supports vi-
sual modeling and simulation of complex reactive systems bysimultaneously
using finite state machine (FSM) concepts, STATECHARTS formalisms [87],
and flow diagram notations. A STATEFLOW model can be included in a
SIMULINK model as a subsystem.

Together with SIMULINK and STATEFLOW, MATLAB has become thede
factodesign-capture standard in academia and industry for control and data-
flow applications that mix continuous and discrete-time domains. The graph-
ical input language together with the simulation and symbolic manipulation
tools create a powerful toolset for system design. The toolsare based on a
particular mathematical formalism, a language, necessaryto analyze and sim-
ulate the design. Unfortunately, the semantics of the language is not formally
defined. For this reason, we discuss the aspects of the SIMULINK / STATE-

1We have also drawn from a technical report by S. Neema [143].

3.1. Simulink and Stateflow 19

FLOW semantics as data models. As discussed below, the behavior of the de-
sign depends upon the execution of the associated simulation engine and the
engine itself has somewhat ambiguous execution rules.

3.1.1 SIMULINK / STATEFLOW Syntax

Both SIMULINK and STATEFLOW are graphical languages. SIMULINK graph-
ical syntax is very intuitive (and this is also the reason whythis language is
so popular). A system in SIMULINK is described as a collection ofblocksthat
compute the value of their outputs as a function of their inputs. Blocks com-
municate through connectors that are attached to theirports. A subsystem
can be defined as the interconnection of primitive blocks or of other subsys-
tems, and by specifying its primary input and output ports. Once defined,
subsystems can be used to specify other subsystems in a hierarchical fash-
ion. SIMULINK has a rich library of primitive components that can be used to
describe a system. The library is composed of six fundamental block sets:

• Continuous: blocks for processing continuous signals such as the
Derivative andIntegrator blocks; more complex continuous time op-
erators, likeState-Space blocks that can be used to model dynami-
cal systems described by state equations;Zero-Pole blocks that can
be used to describe transfer functions in thes domain.

• Discrete: blocks for processing discrete signals; most of these are
descriptions of transfer functions in thez domain;Discrete Zero-

Pole, Discrete State-Space, and Discrete-Time Integrator are exam-
ples of blocks that can be instantiated and parameterized ina
SIMULINK model. Discrete blocks have aSample Timeparame-
ter that specified the rate of a periodic execution. This library also
includesUnit Time and Zero-Order Hold, which are important “in-
terface blocks” in modeling multi-rate systems with SIMULINK .
Specifically aUnit Delay blocks must be inserted when moving
from a slow-rate to a fast-rate block and aZero-Order Hold is nec-
essary in the other case [47, 128].

• Math Operations: general library of blocks representing mathemat-
ical operations likeSum, Dot Product, andAbs (absolute value).

• Sinks: signal consumers that can be used to display and store the
results of the computation or to define the boundaries of the hier-

20 Tools for Simulation

archy. There are several types of display blocks for run timegraph
generation. It is possible to store simulation results in a MATLAB

workspace variable for post-processing. Output ports are special
type ofSinks.

• Sources: various signal generators that can be used as stimuli for
test-benches; input ports are a special type ofSources.

• Discontinuities: non-linear transformations of signals such asSatu-

ration andQuantizers; theHit Crossing block is very useful for mod-
eling hybrid systems: this block has athresholdparameter and it
generates an output event when the threshold is hit.

The SIMULINK syntax supports the definition of subsystems that can be
instantiated in a SIMULINK model allowing designers to use hierarchy in the
organization of their designs. A STATEFLOW model can be instantiated as a
block within a SIMULINK model. The syntax of STATEFLOW is similar to that
of STATECHARTS. A STATEFLOW model is a set of states connected by arcs.
A state is represented by a rounded rectangle. A state can be refined into a
STATEFLOW diagram, thus creating a hierarchical state machine. A STATE-
FLOW model can have data input/output ports as well as event input/output
ports. Both data and events can be defined as local to the STATEFLOW model
or external, i.e. coming from the SIMULINK parent model in which case, data
and events are communicated throuhg ports.

Each arc, or transition, has a label with the following syntax:
event[condition]{condition action}/transition action

Transitions can join states directly, or can be joined together usingconnec-
tive junctionsto make composite transitions that simulateif ... then ... else and
loop constructs. Each segment of a composite transition is called atransition
segment. A transition is “attempted” whenever its event is enabled and the
condition is true. In that case, the condition action is executed. If the transi-
tion connects directly to a destination state, then controlis passed back to the
source state that executes its exit action (see below), thenthe transition exe-
cutes its transition action, and finally the state change takes place by making
the destination state active. On the other hand, if the transition ends at a con-
nective junction, the system checks if any of the outgoing transition segments
is enabled, and further attempts to reach a destination state. If no path tho-
rugh the transition segments can be found to reach a destination state, then the

3.1. Simulink and Stateflow 21

source state remains active and no state change takes place.Note, however,
that, in the process, some of the condition actions might have been executed.
This is essential to simulate the behavior of certain control flow constructs
over the transitions, and at the same time distinguish with the actions to be
taken upon a state change.

A state has a label with the following syntax:
name/

entry:entry action

during:during action

exit:exit action

on event name:on event name action

The identifiername denotes the name of the state; theentry action is executed
upon entering the state; theduring action is executed whenever the model is
evaluated and the state cannot be left; theexit action is executed when the
state is left; finally, theevent name action is executed each time the specified
event is enabled.

3.1.2 SIMULINK / STATEFLOW Semantics

The SIMULINK Data Model. SIMULINK is a simulation environment that
supports the analysis of mixed discrete-time and continuous-time models.
Different simulation techniques are used according to whether continuous
blocks and/or discrete blocks are present. We discuss only the case in which
both components are present.

A SIMULINK project2 is stored in an ASCII text file in a specific for-
mat referred to as Model File Format in the SIMULINK documentation. The
SIMULINK project files are suffixed with “.mdl” and therefore we may oc-
casionally refer to a SIMULINK project file as an “mdl file”. There is a clear
decoupling between the SIMULINK and the STATEFLOW models. When a
SIMULINK project contains STATEFLOW models, the STATEFLOW models are
stored in a separate section in the mdl file. We present STATEFLOW models
separately in the next section. The data models presented here capture only
the information that is being exposed by SIMULINK in the mdl file. Note that
a substantial amount of semantics information that is sometimes required for

2In order to avoid any ambiguity, a complete model of a system in SIMULINK will be referred to as a
“SIMULINK project”.

22 Tools for Simulation

the effective understanding of the SIMULINK models is hidden in the MAT-
LAB simulation engine, or in the SIMULINK primitive library database.

The SIMULINK simulation engine deals with the components of the de-
sign by using the continuous-time semantic domain as a unifying domain
whenever both continuous and discrete-time components arepresent. In fact,
discrete-time signals are just piecewise-constant continuous-time signals. In
particular, the inputs of discrete block is sampled at multiples of itsSample
Timeparameter while its outputs are piecewise-constant signals.

The simulation engine includes a set of integration algorithms, called
solvers, which are based on the MATLAB ordinary differential equation
(ODE) suite. A sophisticated ODE solver uses a variable time-step algorithm
that adaptively selects a time-step tuned to the smallest time constant of the
system (i.e., its fastest mode). The algorithm allows for errors in estimating
the correct time-step and it back-tracks whenever the truncation error exceeds
a bound given by the user. All signals of the system must be evaluated at the
time-step dictated by the integration algorithm even if no event is present at
these times. A number of multi-rate integration algorithmshave been pro-
posed for ODEs to improve the efficiency of the simulators butthey have a
serious overhead that may make them even slower than the original conser-
vative algorithm. MATLAB provides a set of solvers that the user can choose
from to handle either stiff (e.g.,ODE15S) or non-stiff (e.g.,ODE23) problems.

The most difficult part for a mixed-mode simulator that has todeal with
discrete-events as well as continuous-time dynamics is managing the interac-
tion between the two domains. In fact, the evolution of the continuous-time
dynamics may trigger a discrete event at a time that is not known a priori. The
trigger may be controlled by the value of a continuous variable, in which case
detecting when the variable assumes a particular value is ofgreat importance
as the time at which the value is crossed is essential to have acorrect simula-
tion. This time is often difficult to obtain accurately. In particular, simulation
engines have to use a sort of bisection algorithm to bracket the time value of
interest. Numerical noise can cause serious accuracy problems. SIMULINK

has a predefined block calledzero-crossingthat forces the simulator to accu-
rately detect the time when a particular variable assumes the zero value.

In SIMULINK , there is the option of using fixed time-step integration
methods. The control part of the simulator simplifies considerably, but there
are a few problems that may arise. If the system isstiff, i.e., there are substan-

3.1. Simulink and Stateflow 23

tially different time constants, the integration method has to use a time step
that, for stability reasons, is determined by the fastest mode. This yields an
obvious inefficiency when the fast modes die out and the behavior of the sys-
tem is determined only by the slower modes. In addition, ana priori knowl-
edge of the time constants is needed to select the appropriate time step. Fi-
nally, not being able to control the time step may cause the simulation to be
inaccurate in estimating the time at which a jump occurs, or even miss the
jump altogether!

The computations of the value of the variables are scheduledaccording
to the time step. Whenever there is a static dependency amongvariables at a
time step, a set of simultaneous algebraic equations must besolved. Newton-
like algorithms are used to compute the solution of the set ofsimultaneous
equations. When the design is an aggregation of subsystems,the subsystems
may be connected in ways that result in ambiguity in the computation. For
example, consider a subsystemA with two outputs: one to subsystemB and
one to subsystemC. SubsystemB has an output that feedsC. In this case, we
may evaluate the output ofC whenever we have computed one of its inputs.
Assuming thatA has been processed, then we have the choice of evaluating
the outputs ofB or of C. Depending on the choice of processingB or C,
the outputs ofC may have different values! Simultaneous events may yield a
nondeterministic behavior. In fact, both cases are in principle correct behav-
iors unless we load the presence of connections among blockswith causality
semantics. In this case,B hasto be processed beforeC. Like many other sim-
ulators, SIMULINK deals with nondeterminism with scheduling choices that
cannot be but arbitrary unless a careful (and often times expensive) causal-
ity analysis is carried out. Even when a causality analysis is available, there
are cases where the nondeterminism cannot be avoided since it is intrinsic in
the model. In this case, scheduling has to be somewhat arbitrary. If the user
knows what scheme is used and has some control on it, he/she may adopt the
scheduling algorithm that better reflects what he/she has inmind. However, if
the choice of the processing order is doneinsidethe simulator according, for
example, to a lexicographical order, changing the name of the variables (or of
the subsystems) may change the behavior of the system itself! Since the inner
workings of the simulation engines are often not documented, unexpected
results and inconsistencies may occur. This phenomenon is well known in
hardware design when Hardware Description Languages (HDLs) are used to

24 Tools for Simulation

represent a design at the register-transfer level (RTL) anda RTL simulator is
used to analyze the system. For example, two different RTL simulators may
give two different results even if the representation of thedesign is identical,
or if it differs solely on the names of the subsystems and on the order in which
the subsystems are entered.

The STATEFLOW Data Model. STATEFLOW models the behavior of dy-
namical systems based on finite state machines. The STATEFLOW model-
ing formalism is derived from STATECHARTS developed by Harel [87]. The
essential differences from STATECHARTS are in the action language. The
STATEFLOW action language has been extended primarily to reference MAT-
LAB functions, and MATLAB workspace variables. Moreover, the concept of
condition action has been added to the transition expression.

The interaction between SIMULINK and STATEFLOW occurs at the event
and data boundaries. The simulation of a system consisting of SIMULINK

and STATEFLOW models is carried out by alternatively releasing the control
of the execution to the two simulation engines embedded in the two tools. In
the hardware literature, this mechanism is referred to asco-simulation. Since
control changes from one engine to the other, there is an overhead that may be
quite significant when events are exchanged frequently. An alternative sim-
ulation mechanism would consist of a unified engine. This, however, would
require a substantial overhaul of the tools and of the underlying semantic
models.

3.1.3 Examples

A moving point mass can be modeled in SIMULINK as the subsystem shown
in Figure 3.1. The two accelerationsax anday are integrated to obtain the
two velocitiesvx andvy, which are integrated to obtain the positionsx andy.
The subsystem has a reset input that forces the integrators to be loaded with
the initial conditionsvx0, vy0, x0, y0 provided externally. In order to avoid
algebraic loops through the STATEFLOW model, outputs are taken from the
integrators’ state ports which represent the outputs of theintegrators at the
previous time stamp. The system discussed in Section 2.2.1 can be modeled
by instantiating and coordinating three of the point mass subsystems. The
entire system is shown in Figure 3.2. TheChartblock is a STATEFLOW model

3.1. Simulink and Stateflow 25

Fig. 3.1 Model of single moving mass in SIMULINK /STATEFLOW.

describing the discrete automaton that is shown in Figure 3.3. We assume
m1 = m2 = m3. The STATEFLOW chart is a hierarchical state machine.
There are four states:

• allon in which all point masses are on the table. The entry state is
m1moving in which onlym1 is moving to the right. The first mass
that falls off the table ism3 because masses are not allowed to
make vertical jumps. In this state two events can take place:m1

collides withm2 or m2 collides withm3.
• m3off in whichm3 has fallen. Transition to this state sets the verti-

cal accelerationay3 to −9.81m/s2 but does not reset the integra-
tors’ states. In this state eitherm1 collides withm2 or m3 touches
the ground.

• m23off in which m2 has also fallen. Transition to this state sets
the vertical accelerationay2 to −9.81m/s2 but does not reset the
integrators’ states. In this state eitherm3 touches the ground or
m2 does.

26 Tools for Simulation

Fig. 3.2 Model of the three point masses in SIMULINK /STATEFLOW.

• alloff in which m1 has fallen too. In this state any mass can touch
the ground.

The simulation result is shown in Figure 3.4. We setx2,0 = L−0.5, x3,0 = L,
ε = 0.9, L = 7 andh = 3.

The simulation result highlights how discrete and continuous states are
updated. There is one integration step between the time whena guard be-
comes enabled and the time when a transition is taken. The delay is due to
the fact that when a reset of the integrators is needed, SIMULINK blocks are
executed for at least one integration step before passing the control back to
the STATEFLOW chart. Things are different for the change in the values of
the vertical accelerations. This change requires no reset and transitions can
be taken in the STATEFLOW model in zero time. The time shift due to the
reset of velocity propagates to the bounces of the two massesthat occurs at
two different times, as shown in the enlarged inset on the left of Figure 3.4.

3.1. Simulink and Stateflow 27

threemassesparameterized/Chart

Printed 02−Aug−2005 22:23:08

m3off

m23off

alloff

allon

m1tm2

m2tm3

m3bounce

m1tm2

m3bounce

m2bounce

m3bounce m2bounce

m1bounce

m1moving

/reset1;reset2;reset3;vx10=1;vx20=0;vx30=0;vy10=0;vy20=0;vy30=0;ay1=0;ay2=0;ay3=0

[y3<=0]/reset3;vy30=−0.9*vy3;vx30=0.9*vx3

[x1 >= x2 && vx1 > vx2]/reset1;reset2;vx10=vx1*(1−0.9)/2 + vx2*(1+0.9)/2;vx20=vx1*(1+0.9)/2 + vx2*(1−0.9)/2

[x1 >= x2 && vx1 > vx2]/reset1;reset2;vx10=vx1*(1−0.9)/2 + vx2*(1+0.9)/2;vx20=vx1*(1+0.9)/2 + vx2*(1−0.9)/2

[y3<=0]/reset3;vy30=−0.9*vy3;vx30=0.9*vx3
[x1 >= x2 && vx1 > vx2]/reset1;reset2;vx10=vx1*(1−0.9)/2 + vx2*(1+0.9)/2;vx20=vx1*(1+0.9)/2 + vx2*(1−0.9)/2

[x2 >= x3 && vx2 > 0]/reset2;reset3;vx20=vx2*(1−0.9)/2 + vx3*(1+0.9)/2;vx30=vx2*(1+0.9)/2 + vx3*(1−0.9)/2

[x3 >= 7 && vx3 > 0]/ay3=−9.81

[x2 >= 7 && vx2 > 0]/ay2=−9.81

[y2<=0]/reset2;vy20=−0.9*vy2;vx20=0.9*vx2 [y2<=0]/reset2;vy20=−0.9*vy2;vx20=0.9*vx2[y3<=0]/reset3;vy30=−0.9*vy3;vx30=0.9*vx3

[y3<=0]/reset3;vy30=−0.9*vy3;vx30=0.9*vx3[y3<=0]/reset3;vy30=−0.9*vy3;vx30=0.9*vx3

[y1<=0]/reset1;vy10=−0.9*vy1;vx10=0.9*vx1

[y3<=0]/reset3;vy30=−0.9*vy3;vx30=0.9*vx3

[y1<=0]/reset1;vy10=−0.9*vy1;vx10=0.9*vx1

[y2<=0]/reset2;vy20=−0.9*vy2;vx20=0.9*vx2 [y2<=0]/reset2;vy20=−0.9*vy2;vx20=0.9*vx2

[y3<=0]/reset3;vy30=−0.9*vy3;vx30=0.9*vx3
[x1 >= 7]/ay1=−9.81[y1<=0]/reset1;vy10=−0.9*vy1;vx10=0.9*vx1

[y2<=0]/reset2;vy20=−0.9*vy2;vx20=0.9*vx2

Fig. 3.3 Model of the three point masses automata in SIMULINK /STATEFLOW.

Another simulation artifact is shown in the in second inset at the right of Fig-
ure 3.4 at the end of the simulation. There, we see that massesm1 andm3

fall below the floor. This is because transitions are always interleaved with the
integration step, and one of two events that occur simultaneously may there-
fore be lost. In this case, the system reacts to the bouncing of massm2, by
taking the corresponding transition in statealloff shown in Figure 3.3. Subse-
quently, control is passed to the continuous time subsystem, which performs
an integration step. Recall that an event is enabled when theevaluation of the
condition changes from false to true. During the integration, the vertical posi-
tion of massesm1 andm2 remains negative, thus disabling the corresponding
event. Hence, the event, which was enabled at the previous step, is lost. This
problem could be resolved by a more elaborate discrete modelthat takes into
account the possibility of simultaneous events.

The Full Wave Rectifier Example. Figure 3.5 illustrates a SIMULINK

model of the full wave rectifier system presented in Section 2.2.2. The bottom
part of the figure shows a linearized model of a diode. Theswitchblock has

28 Tools for Simulation

Fig. 3.4 Simulation result for the three-mass system.

three inputs: the middle pin controls which of the two other inputs is routed
to the output. If the value of the control input is greater than zero, the output
is proportional to the input voltage by a constant that represents the forward
resistance. If the control input is less than zero then the current is equal to the
reverse bias current. The sum of the currents in the two diodes is equal to the
current through the load which is modeled as a linear dynamical system.

The simulation results are shown in Figure 3.6, where the correct func-
tionality of the model can be validated. When the load is substituted with a
simple constant (that models a pure resistive load), SIMULINK reports an er-
ror due to an algebraic loop. There are two possible solutions to this problem.
The easiest one is to add a delay in the loop (right before of after the constant)
so that the algebraic loop is eliminated. This solution is not always possible
especially when adding a delay changes the stability properties of a feedback
system. The other solution is to use anAlgebraic Constraintblock that can
be found in theMath OperationsSIMULINK library. This block has an input
calledf(z) and an output calledz. The simulator computesz such thatf(z)

is equal to zero (for index 1 differential algebraic systems).

3.1. Simulink and Stateflow 29

Fig. 3.5 Simulink model of the full-wave rectifier in Simulink.

3.1.4 Discussion

The MATLAB toolbox with SIMULINK and STATEFLOW provides excellent
modeling and simulation capabilities for control and data-flow applications
mixing continuous- and discrete-time domains. SIMULINK interfaces very
well with the MATLAB environment allowing the use of powerful visualiza-
tion functions for plotting graphs and, more generally, forthe post-elaboration

30 Tools for Simulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

Vin
Vout
v1
v2

Fig. 3.6 Simulation results of the rectifier model.

of simulation results. The SIMULINK library is very rich making the language
very expressive. The expressiveness is even enhanced by thepossibility of
calling MATLAB functions and compiled C code.

However, often there is a need to subject the models (developed in
SIMULINK) to a more complex, rigorous, and domain-specific analysis.In
fact, we have seen in Section 3.1.2 that the behavior of the system is sensitive
to the inner working of the simulation engines. Consequently, fully under-
standing what takes place inside the tools would be important to prevent un-
pleasant surprises. On the other hand, in most cases users ignore these details
and may end up with an erroneous result without realizing it.Indeed, the lack
of formal semantics of the models used inside this very successful tool set has
been considered a serious drawback in academic circles3 thus motivating an
intense activity in formalizing the semantics of hybrid systems and a flurry of

3Some authors dispute the fact that “SIMULINK has no semantics” by arguing instead that SIMULINK

has a multitude semantics (depending on user-configurable options) which, however, are informally and
sometimes partially documented [48].

3.2. Modelica 31

activities aimed at providing translation to and from SIMULINK /STATEFLOW.
A strong need has been expressed forautomatic semantic translatorsthat

can interface with and translate the SIMULINK /STATEFLOW models into the
models of different analysis and synthesis tools. In [48] Caspiet al.discuss a
method for translating a discrete-time subset of SIMULINK models into LUS-
TRE programs.4 The proposed method consists of three steps (type inference,
clock inference, and hierarchical bottom-up translation)and has been imple-
mented in a prototype tool called S2L.

3.2 Modelica

MODELICA is an object-oriented language for hierarchical physical model-
ing [72, 163] targeting efficient simulation. One of its mostimportant features
is non-causal modeling. In this modeling paradigm, users do not specify the
relationship between input and output signals directly (interms of a func-
tion), but rather they define variables and the equations that they must satisfy.
MODELICA provides a formal type system for this modeling effort. Two com-
mercial modeling and simulation environments for MODELICA are currently
available: DYMOLA [69] (Dynamic Modeling Laboratory) marketed by Dy-
nasim AB and MATHMODELICA, a simulation environment integrated into
Mathematica and Microsoft Visio, marketed by MathCore Engineering.

3.2.1 MODELICA Syntax

The syntax of the MODELICA language is described in [25]. Readers familiar
with object-oriented programming will find some similarities with JAVA and
C++. However, there are also fundamental differences sinceMODELICA is
oriented to mathematical programming. This section describes the syntactic
statements of the language and gives some intuition on how they can be used
in the context of hybrid systems. This, of course, is not a complete reference
but only a selection of the basic constructs of the language.A complete ref-
erence can be found in [25]. The book by Tiller [163] is an introduction to
the language and provides also the necessary background to develop MOD-
ELICA models for various physical systems.

4While doing so, they also attempt to formalize the typing andtiming mechanisms of such discrete-time
subset of SIMULINK .

32 Tools for Simulation

MODELICA is a typed language. It provides some primitive types likeIn-

teger, String, Boolean andReal. As in C++ and Java, it is possible to build more
complicated data types by defining classes. There are many types of classes:
records, types, connectors, models, blocks, packages and functions. Classes,
as well as models, have fields (variables they act on) and methods.5 In MOD-
ELICA, class methods are represented byequation andalgorithms sections. An
equation is syntactically defined as<expression = expression> and anequation

section may contain a set of equations. The syntax supports the ability to de-
scribe a model as a set of equations on variables (non-causalmodeling), as
opposed to a method of computing output values by operating on input values.
In non-causal modeling there is no distinction between input and output vari-
ables; instead, variables are involved in equations that must be satisfied. The
Algorithm sections are simply sequential blocks of statements and arecloser to
JAVA or C++ programming from a syntactic and semantic viewpoints. MOD-
ELICA also allows the users to specify causal models by definingfunctions.
A function is a special class that can have inputs, outputs, and analgorithm

section which specifies the model behavior.
Before going into the details of variable declaration, it isimportant to

introduce the notion ofvariability of variables. A variable can be continuous-
time, discrete-time, a parameter or a constant depending onthe modifier used
in its instantiation. The MODELICA variability modifiers arediscrete, parame-

ter andconstant (if no modifier is specified then the variable is assumed to be
continuous). The meaning is self-explanatory; the formal semantics is given
in Section 3.2.2.

MODELICA also defines aconnect operator that takes two variable ref-
erences as parameters. Connections are like other equations. In fact, con-

nect statements are translated into particular equations that involve the re-
quired variables. Variables must be of the same type (eithercontinuous-time
or discrete-time). Theconnect statement is a convenient shortcut for the users
who could write their own set of equations to relate variables that are “con-
nected”.

MODELICA is a typed system. Users of the language can extend the pre-
defined type set by defining new, and more complex, types. The MODEL-

5C++ or JAVA programmers are used to this terminology, where methods arefunctions that are part of a
class definition.

3.2. Modelica 33

ICA syntax supports the following classes:6

• record: it is just an aggregation of types without any method def-
inition. In particular, no equations are allowed in the definition or
in any of its components, and they may not be used in connections.
A record is a heterogeneous set of typed fields.

• type: it may only be an extension to the predefined types, records,
or array of type. It is like atypedef in C++.

• connector: it is a special type for variables that are involved in a
connection equation. Connectors are specifically used to connect
models. No equations are allowed in their definition or in anyof
their components.

• model: it describes the behavior of a physical system by means of
equations. It may not be used in connections.

• block: it describes an input-output relation. It has fixed causality.
Each component of an interface must either have causality equal
to input or output. It can not be used in connections.

• package: it may only contain declarations of classes and con-
stants.

• function: it has the same restrictions as for blocks. Additional re-
strictions are: no equations, at most onealgorithm section. Calling
a function requires either analgorithm section or an external func-
tion interface which is a way of invoking a function described in
a different language (for instance C). A function can not contain
calls to the MODELICA built-in operatorsder, initial, terminal, sam-

ple, pre, edge, change, reinit, delay, andcardinality whose meaning is
explained in Section 3.2.2.

Inheritance is allowed through the keywordextends like in JAVA . A class can
extend another class thereby inheriting its parent class fields, equations, and
algorithms. A class can be defined aspartial, i.e. it cannot be instantiated di-
rectly but it has to be extended first. The MODELICA language provides con-
trol statements and loops. There are two basic control statements (if andwhen)
and two loop statements (while andfor).

6Some of the constructs mentioned below are explained in Section 3.2.2

34 Tools for Simulation

if expressionthen
equation/algorithm

else
equation/algorithm

end if

For instance, an expression can check the values of a continuous variable.
Depending on the result of the Boolean expression, a different set of equations
is chosen. It is not possible to mix equations and algorithms. If one branch
has a model described by equations, so has to have the other branch. Also
the number of equations has to match. The syntax of thefor statement is as
follows:

for IDENT in expressionloop
{ equation/algorithm;}

end for

IDENT is a valid MODELICA identifier. A for loop can be used to generate
a vector of equations, for instance. It is not possible to mixequations and
algorithms. Thewhile statement syntax is as follows:

while expressionloop
{ equation/algorithm;}
end while

A while loop has the same meaning as in many programming languages. The
body of the while statement is active as long as the expression evaluates to
true. Finally, thewhen statement has the form:

whenexpressionthen
{ equation/algorithm;}

end when

whenexpressionthen
{ equation/algorithm;}

else whenexpressionthen
{ equation/algorithm;}

end when

The body of a when statement is active when the expression changes from
false to true. Real variables assigned in awhen clause must be discrete time.
Also, equations in awhen clause must be of the formv = expression, where

3.2. Modelica 35

v is a variable. Expressions use relation operators like≤,≥,==, ... on con-
tinuous time variables, but can be any other valid expression whose result is
a Boolean.

3.2.2 MODELICA Semantics

The MODELICA language distinguishes between discrete-time and
continuous-time variables. Continuous-time variables are the only ones
that can have a non-zero derivative. MODELICA has a predefined operator
der(v) that indicates the time derivative of the continuous variable v. When
v is a discrete time variable (specified by using thediscrete modifier at
instantiation time) the derivative operator should not be used even if we
can informally say that its derivative is always zero and changes only at
event instants(see below). Parameter and constant variables remain constant
during transient analysis.

The second distinction to point out is between thealgorithm and theequa-

tion sections. Both are used to describe the behavior of a model. An equation

section contains a set of equations that must be satisfied. Equations are all
concurrent and the order in which they are written is immaterial. Further-
more, an equation does not distinguish between input and output variables.
For instance, an equation could bei1(t) + i2(t) = 0 which does not specify
if i1 is used to computei2 or vice-versa. The value ofi1 andi2, at a specific
time t0, is set in such a way that all the equations of the model are satisfied.
An algorithm section is a block of sequential statements. Here, order matters.
In analgorithm section, the user should use the assignment operator:= instead
of the equality operator=. Only one variable reference can be used as left
operand. The value of the variable to the left of the assignment operator is
computed using the values of the variables to the right of it.

Causal models in MODELICA are described using functions. A function
is a particular class that has input and output variables. A function has exactly
onealgorithm section that specifies the input/output behavior of the function.
Non-causal models are described by means ofequation sections defined in
classes or models. Statements likeif then else andfor are quite intuitive. In the
case ofif clauses inequation sections, if the switching condition contains also
variables that are not constants or parameters then theelse branch cannot be
omitted, otherwise the behavior will not be defined when a false expression

36 Tools for Simulation

is evaluated.
The when clause deserves particular attention. When the switching ex-

pression (see Section 3.2.1) evaluates to true the body of the when clause is
active. The switching expression is considered a discrete-time predicate. If
the body of the when clause is not active, all the variables assigned in the
body should be held constant to their values at the last eventinstant. Hence,
if the when clause is in anequation section, each equality operator must have
only one component instance on the left-hand side (otherwise it is not clear
which variable should be held). Such component instance is the one whose
value is held while the switching expression evaluates to false. This condition
can be checked by a syntax checker.

Finally, a connect statement is an alternative way of expressing certain
equations. Aconnect statement can generate two kinds of equations depending
on the nature of the variables that are passed as arguments. In the first case,
the variablesv1, . . . , vn are declaredflows at instantiation time (using the
flow modifier) and the connection generates the equationv1 + . . . + vn = 0.
Otherwise, the connection generates the equationv1 = ... = vn. Note that the
term “flow” here should not be confused with the same term usedto indicate
a continuous evolution as opposed to a discrete jump (see, e.g., Section 3.5).

Equivalent Mathematical Description of aMODELICA Program. A pro-
gram written in the MODELICA language can be interpreted by defining a
one-to-one mapping between the program and a system of Differential Al-
gebraic Equations (DAE). The first step is to translate a hierarchical MOD-
ELICA model into a flat set of MODELICA statements, consisting of the set
of equation andalgorithm sections of all the used components. The resulting
system of equations looks like the following:

c := fc(rel(v)) (3.1)

m := fm(v, c) (3.2)

0 := fx(v, c) (3.3)

wherev := [ẋ;x; y; t;m; pre(m); p]. Here,p is the set of parameters and
constant variables,m is the set of discrete event variables,pre(m) is the value
of discrete events variables immediately before the current event occurred,x
andy are continuous variables,rel(v) is the set of relations on variables inv

3.2. Modelica 37

andc is the set of expressions inif statements (including expressions coming
from the conversion ofwhen statements intoif). The variablesx and y are
distinguished becausex variables appear differentiated whiley variables do
not. A DAE solver will iterate in the following way:

• Equation 3.3 is solved by assumingc andm constants, meaning
that the system of equations is a continuous system of continuous
variables;

• during integration of Equation 3.3, the conditions in Equation 3.1
are monitored. If a condition changes its status, an event istrig-
gered at that specific time and the integration is halted.

• at the event instant, Equation 3.2 is a mixed set of algebraicequa-
tions which is solved for the Real, Boolean and Integer unknowns;

• after the event is processed, the integration is restarted with Equa-
tion 3.3.

3.2.3 Examples

We first describe the full wave rectifier example, which showsthe useful-
ness of object orientation and non-causal modeling. The variables are cur-
rents through and voltages across each component, whose types are defined
as follows:

type Voltage = Real;
type Current = Real;

Each component in a circuit has pins to connect to other components. A pin is
characterized by a voltage (with respect to a reference voltage) and an input
current. A pin is defined as follows:

connectorPin
Voltage v;
flow Current i;

endPin;

The connector keyword is used to specify that pins are used in connection
statements. Theflow keyword is used to declare that the variablei is a flow,
i.e. the sum of allCurrent fields of Pins in a connection must be equal
to zero. A generic two-pin component can be described in the following
way [73]:

38 Tools for Simulation

partial class TwoPin
Pin p, n;
Voltage v;
Current i;
equation

v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

endTwoPin;

This class defines a positive and a negative pin. Kirchoff’s equations for volt-
age and current are declared in theequation section. This class is partial and
we extend it to specify two pins components like resistors and capacitors. A
capacitor for instance can be described as follows:

classCapacitor
extendsTwoPin;
parameter RealC(unit=”F”) ”Capacitance”;
equation

C * der(v) = i;
endCapacitor;

In theequation section, we need only declare the component constituent equa-
tion since the other equations are inherited from a two-pin component. A
parameter is used for the value of capacitance. A diode is modeled as a com-
ponent with two regions of operation: reverse bias forv < 0 and forward bias
for v ≥ 0:

classDiode
extendsTwoPin;
equation

if v ≥ 0 then i = v / 0.1;
elsei = -1e-15;
end if;

endDiode;

In the forward-bias region, the diode is a resistor with a very small resistance
while in reverse bias it is basically an open circuit (only a small reverse cur-
rent flows through it). Each component can be instantiated and interconnected
with others to build a netlist as in the following example:

3.2. Modelica 39

classcircuit
Resistor R1(R = 10); Capacitor C1(C = 0.01);
Vsin DCp(VA = 5); Vsin DCn(VA = 5);
Diode d1; Diode d2;
Ground G;
equation

connect(DCp.p, d1.p);connect(d1.n , R1.p);
connect(d1.n , C1.p);connect(DCp.n, G.gpin);
connect(DCn.p, G.gpin);connect(DCn.n, d2.p);
connect(d2.n , R1.p);connect(C1.n, G.gpin);
connect(R1.n, G.gpin);

endcircuit;

whereVsin is the sinusoidal voltage source andGround is a component
that is used to fix the voltage of a node to0V . Figure 3.7 shows the simulation
result for the two different types of load. The waveforms were obtained by
simulating the MODELICA models with DYMOLA . DYMOLA is able to solve
the algebraic loop by performing a symbolic manipulation.

(a) (b)

Fig. 3.7 Dymola simulation results of the Modelica rectifierexample: (a) for an RC load and (b) for a
pure resistive load

The Three-Mass Example. A moving mass is a MODELICA class that de-
fines a mass moving in a bi-dimensional space with vertical and horizontal
accelerations equal toax anday respectively.

classMovingMass

40 Tools for Simulation

parameter Realx0, y0, vx0, vy0, ax0, ay0;
Realx, y, vx, vy, ax, ay;

equation
der(x) = vx; der(vx) = ax; der(y) = vy; der(vy) = ay;

algorithm
when initial() then

reinit (x, x0); reinit (y, y0); reinit (vx, vx0);
reinit (vy, vy0); reinit (ax, ax0);reinit (ay, ay0);

end when;
endMovingMass;

The equations are self-explicative. When the simulation starts, the call toini-

tial() generates an event that executes thewhen clause. Thereinit statements
set each variable to its initial value that is passed as parameter. The system
of three masses is a MODELICA class that instantiates three moving masses
and defines guards conditions and resets maps. The model is described as
follows:

classThreeMasses
parameter Real m1 ”Mass1”, m2 ”Mass2”, m3 ”Mass3”;
parameter Real h ”Height”, L ”Lenght”, e ”Restitution”;
MovingMass mass1(x0=0.0,y0=h,vx0=3.0,vy0=0.0,ax0=0.0,ay0=0.0);
MovingMass mass2(x0=6.5,y0=h,vx0=0.0,vy0=0.0,ax0=0.0,ay0=0.0);
MovingMass mass3(x0=7.0,y0=h,vx0=0.0,vy0=0.0,ax0=0.0,ay0=0.0);

equation
if ((mass1.x>= L) and (mass1.vx> 0)) then

mass1.ay = -9.81; mass1.ax = 0.0;
else

mass1.ay = 0.0; mass1.ax = 0.0;
end if;
if ((mass2.x>= L) and (mass2.vx> 0)) then

mass2.ay = -9.81; mass2.ax = 0.0;
else

mass2.ay = 0.0; mass2.ax = 0.0;
end if;
if ((mass3.x>= L) and (mass3.vx> 0)) then

mass3.ay = -9.81; mass3.ax = 0.0;

3.2. Modelica 41

else
mass3.ay = 0.0; mass3.ax = 0.0;

end if;
when ((mass1.y<= 0) and (mass1.vy< 0)) then

reinit (mass1.vx,e*pre(mass1.vx));reinit (mass1.vy,-
e*pre(mass1.vy));

end when;
when ((mass2.y<= 0) and (mass2.vy< 0)) then

reinit (mass2.vx,e*pre(mass2.vx));reinit (mass2.vy,-
e*pre(mass2.vy));

end when;
when ((mass3.y<= 0) and (mass3.vy< 0)) then

reinit (mass3.vx,e*pre(mass3.vx));reinit (mass3.vy,-
e*pre(mass3.vy));

end when;
algorithm

when ((mass1.x>= mass2.x) and (mass1.vx>= mass2.vx))then
reinit (mass1.vx, pre(mass1.vx) * (m1 - e * m2) / (m1 + m2) +
pre(mass2.vx) * m2 * (1 + e) / (m1 + m2));
reinit (mass2.vx, pre(mass1.vx) * (1 + e) * m1 / (m1 + m2) +
pre(mass2.vx) * (m2 - e * m1) / (m1 + m2));

elsewhen((mass2.x>= mass3.x) and (mass2.vx>= mass3.vx))then
reinit (mass2.vx, pre(mass2.vx) * (m2 - e * m3) / (m2 + m3) +
pre(mass3.vx) * m3 * (1 + e) / (m2 + m3));
reinit (mass3.vx, pre(mass2.vx) * (1 + e) * m2 / (m2 + m3) +
pre(mass3.vx) * (m3 - e * m2) / (m2 + m3));

end when;
endThreeMasses;
classThreeMassSystem

ThreeMasses tms(m1 = 1.0, m2 = 1.0, m3 = 1.0, h = 3, L = 7, e = 0.9);
endThreeMassSystem;

The code shows two sections: oneequation and onealgorithm. The semantics is
very different in the two cases: statements in analgorithm section are sequen-
tial while equations are constraints that must be satisfied concurrently. Theif
statements define regions where the masses are subject to vertical accelera-

42 Tools for Simulation

tion. Note that, in order to have the same number of equationsindependently
of whether the condition holds or not, anif statement in an equation section
must always have an else branch. A set of when statements takes care of re-
setting the vertical velocity when a mass hits the ground. The order in which
velocities are re-initialized after they hit the ground is immaterial.

We describe the collisions in thealgorithm section. Thewhen-elsewhen

statement imposes a priority between the collision ofm1 with m2 and the
collision of m2 with m3. In particular, if x2,0 = x3,0 then the two colli-
sions have the same time stamp and when the algorithm sectionruns, only
the first branch of thewhen statement is executed while the second event is
basically lost. The DYMOLA compiler warns the user that some variables
are re-initialized in different parts of the source code which could lead to
non-deterministic behaviors unless the events that are involved in the re-
initialization are mutually exclusive.

Fig. 3.8 Modelica simulation result for three-mass system example.

3.2. Modelica 43

Figure 3.8 shows the simulation result. The collision ofm2 andm3 and
the falling events are exactly located at the same point in time as it can be
deduced by the fact that the two masses bounce together at thesame time
(see the larger inset at the left of Figure 3.8). Two effects can be noted. First,
the simulation is non-Zeno. This is because MODELICA always introduces
a delay when executing a transition. Second, the bouncing balls eventually
fall below the floor, as indicated in the inset at the right of Figure 3.8 at the
end of the simulation. This artifact, that we have already seen in SIMULINK

in Section 3.1.3, is again due to the simulation strategy. However, unlike
SIMULINK , the bouncing event in this case is not lost due to the simultaneity
of two events. Instead, the ball bounces, but the following integration step is
too large, in fact large enough that the ball at the next iteration has already
reached its highest point and fallen again below the floor level. Because the
sign of the vertical position and of the vertical velocity remain negative be-
tween the two integration steps, a new bouncing event is not generated, and
the ball keeps falling below the floor level.

3.2.4 Discussion

MODELICA is an object-oriented language for mathematical programming.
Object orientation is well understood in the software community and is cer-
tainly a well accepted programming paradigm. The language is very clean.
There are important features that make building models easy. First of all,
non-causal modeling allows designers to write model equations directly into
the language syntax without any change. Designers do not have to explicitly
define dependent and independent variables. This saves the potential effort of
solving equations or making different models depending on which quantities
are computed and which are used to compute others.

Object orientation helps write reusable models. Inheritance makes it pos-
sible to define a basic set of equations that are common to manydynami-
cal systems and then specialize a model depending on the realapplication.
In modeling a physical system, it is often important to distinguish quanti-
ties as“through” and “across” . MODELICA provides a special keyword to
declare their type. Then, connections are automatically translated into the
correct equation (zero-sum or equality) according to the type of variables in-
volved. MODELICA doesn’t specify the semantics of algebraic loops. This

44 Tools for Simulation

is left to the particular simulation tool, which could simply reject a program
that contains them. For instance, a simple systemx = x cannot be simu-
lated in DYMOLA , which reports a cyclic dependency onx, while the system
x2 + x = x2 + x can be simulated and gives the resultx = 0.0. This is
because the first is treated symbolically with algebraic manipulations, while
the second, which is more complex, is solved using numericaltechniques.

All these features make a MODELICA model very compact. Modeling
hybrid systems in MODELICA, however, is not a trivial task. Guard condi-
tions and reset maps can be specified inequation sections oralgorithm sections
and they have very different meanings. When described in equation sections,
events cannot be sequentially scheduled becauseelsewhen are not allowed.
When described in algorithm sections, simultaneous eventscould be lost.

When such languages are used to describe hybrid systems, thediscrete
state at timet is usually not explicit but it is represented by the sequenceof
events that happened untilt. Continuous state and events are defined by a
set of non-causal equations that model the physical system.These two pecu-
liarities of the MODELICA modeling paradigm make debugging less intuitive
than other tools like HYV ISUAL where states and transitions are explicit and
where models are causal.

3.3 HyVisual

The Hybrid System Visual Modeler (HYV ISUAL) is a block-diagram edi-
tor and simulator for continuous-time dynamical systems and hybrid sys-
tems [106]. HYV ISUAL is built on top of PTOLEMY [68, 131], a framework
that supports the construction of domain specific tools, andcan be freely
downloaded fromhttp://ptolemy.eecs.berkeley.edu.

3.3.1 HYV ISUAL Syntax

Like any PTOLEMY model, a HYV ISUAL model is specified graphically start-
ing from a set of library actors. An actor is a block with typedports and pa-
rameters. Output ports can be connected to input ports by means of relations.
Types are organized in a partial order, wheret1 ≥ t2 if a variable of typet1
can be converted intot2 without loss of information. The type of an output
port must be greater than or equal to the type of the input portit is connected
to. While the actor library is rich enough to model most practical systems,

3.3. HyVisual 45

users have the option to build new actors and redefine relations. Acomposite
actor encapsulates a subsystem as an interconnection of other actors, thereby
representing a level of the hierarchy. Hierarchy can also beexpressed in terms
of a modal model, which represents an actor that has modes of operation. A
modal model is captured as a finite state machine that can be specified by
drawing bubbles (states) and connecting them through arcs (transitions). Each
bubble can be refined into a continuous time system representing a dynamical
system or into another finite state machine.

A hybrid system can be described in HYV ISUAL as follows. A modal
model is instantiated and its ports are configured. The finitestate machine
that describes its mode of operations is represented as a graph. Each state has
a name and each transition is characterized by the followingelements:

guard expression: a Boolean expression involving inputs and outputs of the
modal model as well as state variables;

output actions: an assignment of values to the output ports;
set actions: an assignment of values to the state variables;
reset: a Boolean value (either zero or one);
preemptive: a Boolean value (either zero or one);
non-deterministic: a Boolean value (either zero or one).

Each state can be refined into a dynamical system or into another fi-
nite state machine. The user describes a dynamical system byusing actors
from the built-in libraries. These include actors for standard computation
(like addition, multiplication, etc.), as well as actors tomodel continuous
dynamics (thedynamicslibrary) like Integrator, LaplaceTransferFunction, Lin-

earStateSpace, DifferentialSystem. When a modal model is created, its ports are
propagated to the state machine diagram and to all its refinements.

A HYV ISUAL model is saved in XML format. The XML file is a text file
describing the actors used in the model, their ports and parameter configura-
tion, and their graphical properties (shape and position).

3.3.2 HYV ISUAL Semantics

A complete and clear explanation of the HYV ISUAL semantics is given
in [129]. Here we briefly summarize the main concepts.

46 Tools for Simulation

In HYV ISUAL, acontinuously evolving signalis a function

x : T × N → V

whereT ⊂ R is a connected subset representing the time line,N is the set
of non-negative integers representing an index within a time stamp, andV is
the set of values that the signal can take on. For a fixed timet, the value of
a signal depends on the index, which is used to model simultaneous events.
In order to avoid chattering Zeno conditions, it is requiredthat∃m ∈ N such
that∀n > m, x(t, n) = x(t,m). If the system is non-chattering Zeno, then
the leastm satisfying the condition above is called thefinal index. The value
x(t,m) is called thefinal valueof x at t and the valuex(t, 0) is called the
initial valueat timet. Accordingly, theinitial value functionxi : T → V and
and thefinal value functionxf : T → V are defined as

∀t ∈ T, xi(t) = x(t, 0) and xf (t) = x(t,m)

wherem is the final index. This representation is useful to express functions
that are piecewise continuous, that is functions that are continuous except for
a discrete subset of the timeline. A signalx is piecewise continuousif

(1) the initial value functionxi is left continuous;
(2) the final value functionxf is right continuous;
(3) x has only one value at allt ∈ T \D, whereD is a discrete subset

of T .

The solution to the dynamical system

ẋ(t) = g(x(t), t), x(t0) = x0 (3.4)

can then be expressed as a piecewise continuous signal. Thiscan be further
discretized by lettingD ⊂ T be a discrete set that includes the times at
which signals have more than one value andD′ a superset that includesD. A
discrete traceof the hybrid system is the set

{x(t, n)|t ∈ D′ ∧ n ∈ N} (3.5)

To be a valid trace, it is required that, for each interval between times inD′,
Equation 3.4 have a unique and continuous solution, and thatthe endpoints
of the solution in the interval be in the trace.

To obtain a discrete trace one can proceed as follows.

3.3. HyVisual 47

Init: t∗ = t0, x(t∗, 0) = x0;
Discrete phase:execute the model untilxf (t∗) is computed;
Continuous phase: computet1 such thatg is continuous and locally Lip-

schitz on[t∗, t1). Solve Equation 3.4 on the interval[t∗, t1) with ini-
tial conditionx0 = xf (t∗);

Iterate: Sett∗ = t1 and iterate from the discrete phase withx(t∗, 0) equal
to the value ofx at t1 computed in the previous step.

Two issues remain open: how to computet1 and how to execute the model to
computexf (t∗). The first issue reduces to a proper selection of the step size
while the second reduces to the definition of the discrete phase semantics.

To determine the step size, HYV ISUAL implements both event detection
as well as backtracking. In particular, backtracking is implemented by pro-
viding each actor with two functions:

f : V n
d × T × Σ → V m

d (3.6)

g : V n
d × T × Σ → Σ (3.7)

wheren is the number of input ports,m the number of output ports,Vd is
the set of all possible values (including the absence of a signal ε which is
fundamental for representing discrete signals),T is the time line andΣ is the
state space of an actor. The functionf is the output function andg is the state
update function. In HYV ISUAL, each actor can reject the current step size
decided by the simulator, in which case a new step size must bedecided. The
simulator calls the state update function only after all actors have accepted
the current step size.

The second issue is how to computexf (t∗). HYV ISUAL has a fixed point
semantics to compute the values of signals and state. For an actor, let the input
bex : T ×N → V n

d , the output bey : T ×N → V m
d and the state be given by

the functionσ : T × N → Σ. At time t ∈ T , execution proceeds as follows:

y(t, 0) = f(x(t, 0), t, σ(t, 0))

σ(t, 1) = g(x(t, 0), t, σ(t, 0))

y(t, 1) = f(x(t, 1), t, σ(t, 1))

σ(t, 2) = g(x(t, 1), t, σ(t, 1))

. . .

48 Tools for Simulation

Fig. 3.9 HYV ISUAL model of the three-mass system.

When (and if) all actors in the model have reached a point where their state
no longer changes, then the final values have been reached forall signals and
the execution at timet is complete.

3.3.3 Examples

The HYV ISUAL model of the three-mass system is shown in Figure 3.9. Each
state of the state machine is refined into a continuous time system that de-
scribes the dynamics of a point mass moving with a constant acceleration.
The accelerations are integrated to obtain the velocities and the velocities are
integrated to obtain the positions. Both horizontal and vertical positions are
used to generate threshold events: the horizontal positions are monitored to
check when a point mass falls off the table and the vertical position is moni-
tored to check when a point mass hits the ground.

The initial state is namedInit. From the initial state, the model makes a
spontaneous transition to a state wherem1 starts moving with initial velocity
v10. The state machines implements the one in Figure 2.2.

The simulation results are shown in Figure 3.10 where all three masses
eventually bounce on the ground. In this simulationL = 7, x2,0 = 6.5,
x3,0 = 7 andv1,0 = 3 while yi = 3 for all three masses. Whenm2 touches
m3, HYV ISUAL correctly simulates the collision and the falling events of
m2 and m3 that occur at the same time, but with different indices. When
m2 andm3 touch the ground, multiple output transitions are enabled from
statem2bounce and the simulator reports an error saying that there are mul-

3.3. HyVisual 49

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

t[sec]

x
,
y
[

m
]

Fig. 3.10 HYV ISUAL simulation result for the three-mass system withx20 = 4.95, x30 = 4.98, L = 5
andh = 7.

tiple transitions enabled but not all of them are marked non-deterministic.
In the lastest version of HYV ISUAL, each transition has, in fact, a flagnon-

deterministic that can be marked in situations where multiple transitionscould
be enabled at the same time. After this small change has been made to the
model, the simulation can be successfully completed. At theend of the simu-
lation, as shown in Figure 3.10, the three balls fall below the floor level. This
effect is again due to the choice of the duration of the integration step, as
already explained for MODELICA in Section 3.2.3.

The Full Wave Rectifier Example. The HYV ISUAL model of the full wave
rectifier is shown in Figure 3.11. A diode is modeled as a hybrid system with
two states:Forward andReverse. TheForward state is refined into a linear con-
tinuous time system whose output current is proportional tothe input voltage
by a constantRf . The Reverse state is refined into a system whose output
current is constant and equal toI0. TheRC load model implements the two

50 Tools for Simulation

Fig. 3.11 HYV ISUAL model of the full wave rectifier.

equations:

Vout(t) =
1

C

∫ t

t0

IC(t)dt + Vout(t0)

IC(t) = Iin(t) − IR(t) = Iin(t) −
Vout

R

The simulation result is shown in Figure 3.12.
When the load is replaced by a simple resistor withVout = RIin, HYV I-

SUAL reports an error for the presence of an algebraic loop.

3.3.4 Discussion

HYV ISUAL is a graphical environment for modeling hybrid systems. Graph-
ical representations have the advantage of being intuitiveand easy to use.
There is a rich library of components making the language expressive enough
to model hybrid systems. Type checking and inference are desirable features
in designing large systems, because they help the users focus on the struc-
ture of the system. The implementation of hierarchy in HYV ISUAL is very
clean and allows the users to encapsulate subsystems into larger blocks. Fur-
thermore, state machines can be hierarchical in the sense that a state can be

3.3. HyVisual 51

-1.0

-0.8

-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27

TimedPlotter

Fig. 3.12 HYV ISUAL simulation result for the full wave rectifier

refined in other state machines. This feature of grouping states is very impor-
tant when dealing with systems having a large state-space. It is important to
stress that state and transition refinements can be arbitrary PTOLEMY models.
This is different from SIMULINK , where the states of STATEFLOW are atomic
objects, and the control they exercise over a continuous-time model is via
continuous-time signals with discontinuities rather thanvia mode transitions.
Finally, HYV ISUAL stores the entire design in an XML format, wich can be
easily converted into other XML-based formats using XSL transformations.

HYV ISUAL is based on a solid operational semantics that is missing in
SIMULINK /STATEFLOW or even in MODELICA. HYV ISUAL formally defines
the trace that results from the execution of a model without assuming any
particular solver. MODELICA and SIMULINK /STATEFLOW both rely on the
particular simulator that completes the definition of theiroperational seman-
tics.

Compared to MODELICA, HYV ISUAL can only express causal models
and is based on a graphical syntax that is not always easy to manipulate.
When the model becomes complicated, the number of connections can grow
quadratically with the number of blocks making the diagramsdifficult to edit.

52 Tools for Simulation

3.4 Scicos

SCICOS (SCILAB Connected Object Simulator) is a SCILAB package for
modeling and simulation of dynamical systems including both continuous
and discrete time subsystems [144]. SCILAB (Scientific Laboratory) is a sci-
entific software package for numerical computations that provides a powerful
open computing environment for engineering and scientific applications [79].
Since 1990 SCILAB has been developed by researchers from INRIA and
ENPC. In May 2003 the newly created SCILAB Consortium took over mainte-
nance and development of SCILAB . Since 1994 SCILAB has been distributed
freely via the Internet and used in educational and industrial environments
around the world. SCICOS has been developed also at INRIA and is freely
available for download athttp://www.scicos.org. SCILAB can be seen as similar
to MATLAB while SCICOS is similar to SIMULINK .

SCICOS users can build models of hybrid systems by composing func-
tional blocks from a predefined library (as well as newly-defined blocks) and
simulate them. This is done within a graphical editor. Additionally, users can
generate executable C code implementing the functionalityof some subsys-
tem in the original hybrid system. This is limited to discrete time subsys-
tems, i.e. subsystems that do not include continuous-time blocks. The main
application of SCICOS is embedded control: continuous blocks can be used
to model the physical environment while the discrete subsystems specify the
functionality of the controller. After simulating and refining the design of
the controller, the user can generate C code to be executed onthe target
hardware architecture. Finally, for the important case of distributed real-time
applications, the users can rely on the SCICOS-SYNDEX interface [66] to
generate and deploy executable code on multiprocessors architectures. SYN-
DEX is a system-level CAD software for distributed real-time embedded
systems designed and developed at INRIA that is freely available at “www-

rocq.inria.fr/syndex”.

3.4.1 SCICOSSyntax

A system is modeled in SCICOSby assembling functional components called
blocks that interact by means ofsignals. Each signal, in turn, is character-
ized by anactivation time set, which determines the intervals in which the

3.4. Scicos 53

Fig. 3.13 A generic SCICOSblock and its I/O signals.

signal can evolve and change its value. Each system operation in SCICOS is
associated to a block. The activation times of a signal correspond to the ac-
tivation times of the block that generates it. Figure 3.13 illustrates a generic
block. This can present ports associated to four different signal types: reg-
ular input, regular output, activation (event) input, activation (event) output.
By convention these ports are placed respectively on the left, right, top, and
bottom side of the block. The set of signals in SCICOS is partitioned into
two subsets:regular signals andactivationsignals. Regular signals are used
to exchange data among blocks, while activation signals carry control infor-
mation. Activation signals are also calledevent signalsor impulses. Regular
inputs are linked to regular outputs viaregular paths, while activation in-
puts are linked to activation outputs viaactivation paths. Regular paths carry
piece-wise right-continuous functions of time whereas event paths transmit
timing information concerning discrete events (impulses). In particular, an
event signal specifies the time when the blocks connected to the output event
port generating the event signal are updated according to the internal relations
of the block (see Section 3.4.2).

An activation signal causes the block to evaluate its outputs and new in-
ternal states as a function of its inputs and previous internal states. A block

54 Tools for Simulation

Fig. 3.14 A SCICOSsignal remains constant outside its activation time set.

with no input activation port is permanently active (time-dependent block).
The output signals inherit their activation times set from the union of the ac-
tivation times of the input signals of the generating block.In turn, they can be
used to drive other blocks. The signals leaving the output activation ports are
activation signals generated by the block. For instance, aclock block may gen-
erate a periodic activation signal that can be connected to the input of ascope

block to control the sampling of its inputs [144]. There are two general types
of blocks:basic blocksandsuper blocks. Super blocks are obtained as the hi-
erarchical composition of basic blocks and other super blocks. SCICOScomes
with a library of more than70 basic blocks [144]. Additionally, the users can
build new basic blocks by defining aninterfacing functionand acomputa-
tional function for each of them. The former is always a SCILAB function,
while the latter can also be written in C or Fortran to achievegreater perfor-
mance in the simulation. Besides defining the graphical aspect of the block,
the interfacing function allows users to define the number and types of ports
and to initialize the state and parameters of the block. The computational
function specifies the dynamic behavior of the block througha set of tasks
and is called by the SCICOSsimulator that controls their execution.

3.4. Scicos 55

3.4.2 SCICOSSemantics

A signal x in SCICOS is a pair{x(t), T}, wherex(t) is a function of time
andT is the associatedactivation time seton which the signalx can poten-
tially evolve and change its value [35]. The activation timeset is the union
of time intervals and isolated points calledevents. In fact, a generic signal
in SCICOS can be the result of operating on both continuous (time intervals)
and discrete (time events) signals. Outside its activationtime set, a signal is
constrained to remain constant as illustrated in Figure 3.14, which shows the
evolution of a hybrid signalx. Activation time sets are used in SCICOS in
the same way asclocksare used in the synchronous programming language
SIGNAL [36, 85], namely as atype checkingmechanism. For instance, two
signals can be constrained to have identical time sets. In general, the vari-
ous SCICOSsignal operators induce relations between the corresponding time
sets. Given a generic binary operatorf , the activation time set of the resulting
signal is the union of the activation time sets of its operands, i.e.:

f({x1(t), T1}, {x2(t), T2}) = { f(x1(t), x2(t)), (T1 ∪ T2) }

It is possible to reason formally on the time sets of SCICOSsignals as it is the
case for the clocks of SIGNAL variables.7 Hence, SCICOSusers have a sound
basis for tasks like design optimization and scheduling analysis.

Depending on the type of the block and the directive of the simulator,
the invocation of a computational function may result in various actions like
evaluation of new outputs, state update, or computation of the state derivative.
There are four types of basic blocks in SCICOS: continuous, discrete, zero-
crossing, andsynchro.

A continuous basic blocks (CBB)can have both regular input (output)
ports and event input (output) ports. CBBs can model more than just contin-
uous dynamics systems. A CBB can have a continuous statex and a discrete
statez. Let the vector functionu denote the regular inputs andy the regular
outputs. Then a CBB imposes the following relations:

ẋ = f(t, x, z, u, p)

y = h(t, x, z, u, p)

7Notice however that the SCICOSmodel of computation is not the same as the SIGNAL one.

56 Tools for Simulation

wheref and h are block specific functions, andp is a vector of constant
parameters. The above relation represents two constraintsthat are imposed
by the CBB as long as no events (impulses) arrive on its event input ports.
An event input can cause a jump in the states of the CBB. Assumeone or
more events arrive on the CBB event ports at timete. Then the states jump
according to the following equations:

x = gc(te, x(t−e), z(t−e), u(t−e), p, nevprt)

y = gd(te, x(t−e), z(t−e), u(t−e), p, nevprt)

where gc and gd are block specific functions,nevprt designates the ports
through which the events have arrived, andz(t−e) is the previous value of the
discrete statez (which remains constant between any two successive events).
Finally, CBBs can generate event signals on their event output ports. These
events can only be scheduled at the arrival of an input event.If an event has
arrived at timete, the time of each output event is generated according to

tevo = k(te, z(te), u(te), p, nevprt)

for a block specific functionk and wheretevo is a vector of time values, each
entry of which corresponds to one event output port. Normally all the ele-
ments oftevo are larger thante. If an element is less thante, it simply means
the absence of an output event signal on the corresponding event output port.
Notice that setting “tevo = t” should be avoided because the resulting causal-
ity structure is ambiguous. Also, notice that setting “tevo = t” does not mean
that the output event is synchronized with the input event because two events
can have the same time without being synchronized. The schedule tevo is
recorded inside the CBB in a register that has size equal to the number of
output event ports. The value in the register is used to “fire”the events at the
specified time. This register can be pre-loaded at the beginning of simulation
by setting the correspondinginitial firing in the CBB. Because the register
can hold only one value per output event port, only one outputevent can be
scheduled on each output event port at a time (both at the beginning and in
the course of the simulation). In other words, by the time a new event is ready
to be scheduled, the old one must have been already fired. Another interpre-
tation is that as long as the previously scheduled event has not been fired yet,
the corresponding output port is considered busy, meaning that it cannot ac-

3.4. Scicos 57

cept a new event scheduling. If the simulator encounters such a conflict, it
stops and returns theevent conflicterror message [144].

While a CBB permanently monitors its input ports and continuously up-
dates its output ports and continuous state, adiscrete basic block (DBB)only
acts when it receives an input event, and its actions are instantaneous. DBBs
can have both regular and event input and output ports, but they must have
at least one event input port. DBBs can model discrete dynamical systems. A
DBB can have a discrete statez but no continuous state. Upon the arrival of
events at timete, the state and the outputs of a DBB change as follows

z = fd(te, z(t−e), u(t−e), p, nevprt)

y = gd(te, z, u(te), p)

wherefd andhd are block specific functions. The regular outputy remains
constant between any two successive events. In fact, the outputy and the state
z are piece-wise constant, right-continuous functions of time. Like CBBs,
DBBs can generate output events according to a specific function k and their
events can be pre-scheduled via initial firing. The difference between a CBB
and a DBB is that a DBB cannot have a continuous state and that its out-
puts remain constant between two events. Although in theoryCBBs subsume
DBBs, specifying a block as a DBB has performance advantagessince the
simulator can optimize its execution because it knows that the outputs of the
block remain constant between events. Note that the regularoutput signal of
a DBB is always piece-wise constant. Being piece-wise constant does not
necessarily imply that a signal is discrete. For example, the output of an in-
tegrator (which is a CBB with a continuous state) can, in somespecial cases,
be constant. However, signals that are piece-wise constantcan be identified
based solely on the basic properties of the blocks that generate them. In par-
ticular, in SCICOS, every regular output signal of a DBB is discrete and every
regular output signal of a state-less time invariant CBB receiving only dis-
crete signals on its inputs is also discrete. Thus, the discrete nature of signals
in a model can be specified statically. Again, the SCICOS compiler relies on
this information to optimize the performance of the SCICOSsimulator.

A zero crossing basic block (ZCBB)has regular inputs and event outputs
but no regular outputs, or event inputs. ZCBBs can generate event outputs
only if at least one of their regular inputscrosses zero(i.e., it changes sign).
In such a case, the generation of the event, and its timing, may depend on the

58 Tools for Simulation

combination of the inputs which have crossed zero and the signs of the inputs
(just before the crossing occurs). The simplest example of aSurface Crossing
Basic Blockis thezcross [144]. This block generates an event if all the inputs
cross simultaneously zero. Inputs of ZCBBs can start off at zero, but cannot
remain equal to zero during the simulation. This is considered an ambiguous
state and is declared as an error. Similarly the input of a ZCBB should not
jump across zero. If it does, the crossing may or may not be detected. ZCBBs
cannot be modeled as CBBs or DBBs because in these blocks, no output event
can be generated unless an input event has arrived beforehand.

Synchro basic blocks (SBBs)are the only blocks able to generate output
events that are synchronized with their input events. Theseblocks have a
unique event input port, a unique (possibly vector) regularinput, no state, no
parameters, and two or more event output ports. Depending onthe value of
the regular input, the incoming event input is routed to one of the event output
ports. SBBs are used for routing and under-sampling event signals. Typical
examples are theevent select block and theif-then-else block [144].

Synchronization. In SCICOS if two event signals have the same time, they
are not necessarily synchronized. In other words, one is fired just before or
just after the other but not “at the same time”. Two event signals can be syn-
chronizedonly whenthey can be traced back to a common origin (a sin-
gle output event port) through event paths, event additions, event splits, and
SBBs alone. In particular, a basic block cannot have two synchronized output
event ports. This is possible, however, for super blocks like the2-freq clock

block [144].

3.4.3 Example

SCICOS does not provide a direct way of describing the discrete dynam-
ics of a hybrid automaton as a state machine. Guard conditions have to be
implemented using threshold crossing detectors, and resetmaps have to be
implemented using switches that load different initial conditions to dynami-
cal systems. Moreover, changing the continuous dynamics requires switching
outputs and state variables through different integrationpaths.

Figure 3.15 shows a model of the three-mass system. This model is not
complete and can only simulate correctly ifx20 < x30. Besides the fact that

3.4. Scicos 59

Fig. 3.15 SCICOSmodel of the three-mass system

whenx20 = x30 the model described in Section 2.2 gives an incorrect answer,
the model implemented in SCICOSdoes not guarantee thatvx2 is reset before
vx3. An explicit serialization of the two events should be implemented. Also
we assume thatmi = 1 and ε = 0.9. The three coordinatesxi andyi are
computed by double integration ofaxi andayi respectively. Each integrator
has three input ports: the input function to integrate, the initial condition and
a reset event. When the reset is present, the integrator is reset with the current
value on the initial condition input. The horizontal acceleration is always0
but the initial velocities are determined by selectors whose selection inputs
depend on discrete events. For instance, the horizontal velocity of m2 is reset
to (1 − 0.9)vx2 if m2 hits m3 (i.e. x2 − x3 crosses zero), to(1 + 0.9)vx1 if
m1 hits m2 (i.e. x1 − x2 crosses zero) and to0.9vx2 if m2 hits the ground
(i.e.y2 crosses zero).

The reason why this model simulates correctly only forx20 < x30 is that
in the case of events that happen at the same time stamp, theirorder is not
specified. Ifx20 = x30 then the two events indicating the collision ofm1

60 Tools for Simulation

Fig. 3.16 SCICOSsimulation result of the three-mass system.

with m2 and m2 with m3 are not sequentially ordered and, therefore, the
reset conditions are not guaranteed to be sequentially ordered, either. In order
to have a correct simulation, it would be necessary to further complicate the
model by implementing a priority scheme on the reset actions. The simulation
results are shown in Figure 3.16.

The Full Wave Rectifier Example. The rectifier example is shown in Fig-
ure 3.17. Similarly to SIMULINK , SCICOS users can organize designs hier-
archically by grouping blocks into super-blocks. A diode isa super-block
(shown by the sub-figure in Figure 3.17)composed of a switch that selects
the output current between two inputs: one proportional to the input voltage
and the other constant and equal to−I0. The selection criteria is based on the
value of the input voltage: the first input is selected if it isgreater than zero,
the second otherwise.

The simulation results are shown in Figure 3.18. As in the case of
SIMULINK and HYV ISUAL, the circuit cannot be simulated for a pure re-
sistive load due to an algebraic loop error reported by the simulator.

3.4.4 Discussion

SCICOSprovides a graphical environment for modeling hybrid systems. Dif-
ferential equations are described using integrators and other math operators.
Even if SCICOS can model only causal systems, it is conceptually closer to

3.4. Scicos 61

Fig. 3.17 SCICOSmodel of the full wave rectifier.

Fig. 3.18 SCICOSsimulation result of the full wave rectifier.

MODELICA than HYV ISUAL. A system, in fact, is modeled by specifying
constraints on continuous states and events acting on them.However, SCI-
COS does not provide a graphical tool for the specification and refinement
of hybrid automata like the finite state machine editor of HYV ISUAL. In-
stead, the discrete dynamics must be described using threshold blocks and
switches. Building hybrid system models becomes tedious for designers and
reverse-engineering a model to its specification could be very difficult. More-
over, adding a state or changing an invariant condition could require major

62 Tools for Simulation

changes in the model netlist.
On the other hand, the SCICOS-SYNDEX Interface [66] allows users to

pair up SCICOSand SYNDEX, thereby deriving a design flow for distributed
real-time embedded control applications that leverages the hybrid systems
approach. SYNDEX is a system level CAD software for rapid prototyping
and optimizing the implementation of distributed real-time embedded appli-
cations onto “multi-component” architectures. It is basedon the “algorithm-
architectureadequation” (AAA) methodology [80, 158]. The AAA method-
ology aims at finding the best match between an algorithm and an architecture
while satisfying real-time constraints. This is formalized in terms of graph
transformations. The algorithm is specified with a data-flowgraph while the
architecture is capture via a multiprocessor hyper-graph.Then, an implemen-
tation is derived by distributing and scheduling the formeron the latter. The
result of the graphs transformations is an optimizedSynchronized Distributed
Executive(a SYNDEX), which is automatically built from a library of archi-
tecture dependent executive primitives composing the executive kernel [80].
These primitives support boot-loading, memory allocation, interprocessor
communications, sequencing of user supplied computation functions and of
interprocessor communications, and inter-sequences synchronizations. The
users are provided with a library of executive kernels for various supported
processors, while kernels for other processors can be ported from the exist-
ing ones. Based on this methodology, SYNDEX enables rapid prototyping
of complex distributed real-time embedded applications. This is centered on
automatic code generation, which is performed in three steps: (1) implemen-
tation onto a single-processor workstation for simulation; (2) implementation
onto a multi-processor system in order to study parallelismbenefits and ac-
celerate simulation; (3) real-time execution on the targeted multi-component
architecture which may include programmable components (processors) as
well as non-programmable components like application-specific integrated
circuits (ASICs). The main feature of the SYNDEX software is the seam-
less environment that guides the user from the specificationlevel (functional
specification, distributed hardware specifications, real-time and embedding
constraints) to the distributed real-time embedded code level, through (multi-
)processor simulations. In particular, it automatically generates, distributes
and schedules real-time embedded code.

By relying on the SCICOS-SYNDEX Interface [66], users can model an

3.4. Scicos 63

Fig. 3.19 Modeling embedded control as a hybrid system.

embedded control application in SCICOS as it is described in Figure 3.19: a
model for the physical plant (the environment) is obtained using continuous-
time blocks while the controller is designed by assembling discrete-time
blocks. The users can perform the “high-level” simulation of the entire hy-
brid system to reach a first-cut design of the controller. Then, the discrete
subsystem modeling the controller is transfered into SYNDEX via the pro-
vided interface to generate the embedded code for the targeted distributed
architecture. This step is simplified by the following facts: (1) SCICOS and
SYNDEX share the same model of computation for the discrete subsystem
(a data flow graph) and (2) the I/O interface of the functionaldiscrete blocks
is the same.8 Also, SYNDEX tries to take advantage of the parallelism in-
trinsically captured by the data flow model to match the parallelism offered
by the target architecture, thereby obtaining an implementation that satisfies
the real-time constraints. Notice that the interface has been specifically de-
veloped for this kind of application and does not support thetranslation of
continuous-time basic blocksandzero-crossing basic blocks.

8In fact, it may be the case sometimes that a single SCICOS block is translated into a group of SYN-
DEX blocks. For further details see [66].

64 Tools for Simulation

3.5 Shift

SHIFT is a modeling language developed at U.C. Berkeley for the description
of networksof hybrid automata [63, 64, 152]. The name SHIFT is a permuta-
tion of HSTIF: Hybrid Systems Tool Interchange Format.

The main difference between SHIFT and other modeling paradigms is
that the overall hybrid system in SHIFT has a dynamically changing struc-
ture. More precisely, the entire system in SHIFT is called theworld. The world
consists of a certain number of hybrid components that can bedestroyed or
created in real-time as the system evolves. Therefore the SHIFT language is
mainly used for the description and simulation of highly complex hybrid sys-
tems whose configuration varies over time. The conception ofSHIFT was
motivated by the specification and analysis of designs for the automatic con-
trol of vehicles and highway systems (AHS) [16, 61, 62, 78, 170]. The re-
search area involved in this approach is quite rich, going from the design and
validation of communication protocols [76, 105] to the verification of safe
design [65, 84, 116, 148], and including the development of suitable imple-
mentation methodologies [70, 77]. Hence the need of a modeling framework
that is general enough to capture all these distinct issues,while staying at a
low level of complexity to facilitate learning and formal analysis.

At the time SHIFT was developed, other modeling paradigms for the com-
position of multiple concurrent agents included extended FSMs [109], Com-
municating Sequential Processes [102], DEVS[104], SDL [108] and also the
models of computation described in [107, 140, 176]. Howevernone of them
had the feature to model dynamic configurations of hybrid components. The
characteristic of being able to describe dynamic networks of hybrid systems
makes SHIFT quite unique as a modeling and simulation tool. Areas of appli-
cation possibly include, together with the mentioned AHS, air traffic control
systems, robotics shop-floors, and coordinated robotic agents with military
applications, like Unmanned Aerial Vehicles (UAV) (see [110, 111, 160] and
the references contained therein).

3.5.1 SHIFT Syntax

A world in SHIFT is a set:

W = {h1, · · · , hw}

3.5. Shift 65

wherehi is called thei-th hybrid component in the world. A hybrid compo-
nent can be viewed as a hybrid automatonAH havingQ as the set of discrete
states. In each stateq ∈ Q the continuous statex follows a continuous evo-
lution determined by the flowFq, which can be of the form of a differential
constraint or even a simple algebraic definition. An instantiation of a hybrid
component is called atype. A type is a tuple:H = (q, x,C,L, F, T), where:

• q ∈ Q is the discrete state variable;
• x ∈ R

n is the continuous state variable;
• C = (C0, · · · , Cm) with eachCi ⊂ W is the configuration state

variable;
• L = {l1, · · · , lp} are the event labels;
• F = {Fq | q ∈ Q} are the flows;
• T are the transition prototypes.

Each componenth is, at a specified time, in a particular configurationCh.
Hence theconfiguration(or discrete state) of the world is given by the tuple:

CW = (Ch1
, · · · , Chw

)

The continuous statex can be constrained in one of the following ways:

a) ẋi = FD
i,q(x, xC0

) for differential constraints;
b) xi = FA

i,q(x, xC0
) for algebraic constraints;

wherexC0
is a vector containing the continuous state variables of allthe

elements ofC0. The set of transitionsT is a set of tuplesδ of the form:

δ = (q, q′, g, E, a)

where:

• q, q′ ∈ Q are respectively thesourceandsink (discrete) states of
the transition.

• g is aguard condition: it takes the form of a (possibly quantified)
Boolean expression. It can assume one of two forms:

(1) g(x, xC0
) (Boolean predicate);

(2) ∃c ∈ Ci : g(x, xC0
), 1 ≤ i ≤ m (Boolean predicate).

66 Tools for Simulation

• E is a set of event labels whose purpose is to synchronize the cur-
rent component with the rest of the world. An “internal” transi-
tion, i.e., a transition which does not synchronize with transitions
occurring in the other components of the world, is specified in
SHIFT by leavingE empty.

• a is an action that modifies the state of the world. An action may
also create or destroy new components.

In the rest of this section, we give the precise syntax definition of com-
ponents and transitions and we will omit parts that are not essential for un-
derstanding the language semantics. In the following syntactic definitions,
non-terminals are initalics. Keywords and other literal tokens are insans-

serif. Braces indicate repetition:{X}∗ means zero or more repetitions ofX,
{X}+ means one or more repetitions. Brackets indicate optional parts, that
is [X] stands for zero or one instances ofX. The vertical bar (‘|’) denotes
alternation.

A SHIFT specification is a sequence ofdefinitions:

specification ⇒ { definition}+

definition ⇒ component-type-definition
| external-type-definition
| global-variable-decl
| external-function-decl
| global-setup-clause

A component type definition describes a set of components with common
behavior.

component-type-definition ⇒ type type-name[: parent]
{ { type-clause; }+ } [;]

type-clause ⇒ state state-declarations
| input input-declarations
| output output-declarations
| export export-declaration-list
| setup setup-clause
| flow flow-list
| discrete discrete-state-list
| transition transition-list

3.5. Shift 67

Each type can have inputs, outputs and states. Output variables can be written
to and are visible outside the component and can be used by other compo-
nents. Input variables are defined as external to the component while states
are not visible outside. Exported events can be used to synchronize discrete
state transitions among components. The keywordflow is used to define dif-
ferential and algebraic constraints on variables. Each flowis a set of equations
and is identified by a name. The keyworddiscrete is used to define a discrete
state with an associated name, flow and list of synchronization labels:

discrete-state-list ⇒ discrete-state-clause{ , discrete-state-clause}∗

discrete-state-clause ⇒ state-name[{ equation-list}] [invariant expression]

A transitions is defined as follows:

transition-list ⇒ transition{ , transition}∗

transition ⇒ from-set-> to-state event-list transition-clauses
from-set ⇒ set-of-states
to-state ⇒ state-name

event-list ⇒ { [event{, event}∗] }

event ⇒ local-event
| external-event

external-event ⇒ link-var : exported-event[(set-sync-rule)]
set-sync-rule ⇒ one [: temporary-link]

| all

transition-clauses ⇒ [when expression] [action-clause]

A transition specifies the source and target states, a list ofsynchronization
events and a set of actions to be taken depending on some conditions. Events
in the event list can be locally defined (i.e.,local-events) and exported or can
be events defined and exported by other components (i.e.,external-events).
Events can be of typeopen or closed. An action is a set of reset assignments,
creation of components and connection of components.

3.5.2 SHIFT Semantics

A SHIFT system starts by executing all initializations of global variables, at
time t = 0. Then, the system evolves by alternatingdiscreteandcontinu-

68 Tools for Simulation

ous phases, starting with a discrete phase. In the discrete mode, all possi-
ble transitions are taken, in some serial order unless explicitly synchronized.
Time does not pass in the discrete mode. The system switches to continu-
ous mode when no more transitions are possible. The system evolves in con-
tinuous mode according to the flow associated to the discretestate of each
component. As soon as it becomes possible for one or more components to
execute a transition, time stops again. A component synchronizes its state ma-
chine with other state machines by labeling its own edges with local-events
andexternal-events. Local events are exported; they can be used as external
events by other components, and they can appear inconnection actions. Each
label of an edgeE establishes conditions under which a transition may be
taken alongE. When all conditions are satisfied, and the guard, if present,
evaluates to true, and the component is in a state that hasE as an outgoing
edge, then the transition alongE is taken simultaneously with other transi-
tions as required by the conditions. The conditions associated with each label
are as follows. Letx andy be components, andZ a set of components. Letc

be a single-valued link, andC a set-valued link. Letey be a local event fory,
andez a local event for all components inZ.

• If c evaluates tonil, an edge labeledc:ey may not be taken.
• If c evaluates toy, an edgeE labeledc:ey must be taken simulta-

neously with an edgeE′ labeledey in y.
• If ey is of typeopen then an edgeE′ labeledey in y requires that

there exists a componentx with an edgeE labeledy:ey andE′

must be taken simultaneously withE. However, ifey is of type
closed then:

– if there is no other componentx with an edgeE labeled
c:ey, wherec evaluates toy, thenE′ may be taken alone.

– if there is at least one other componentx with an edgeE
labeledc:ey, wherec evaluates toy, thenE′ must be taken
simultaneously withE.

• If C evaluates to the empty set, the edge labeledC:ez may not be
taken ifset-sync-rule is one. Otherwise it may be taken.

• If C evaluates toZ then an edge labeledez in anyz ∈ Z may only
be taken simultaneously with an edge labeledC:ez. The following

3.5. Shift 69

also applies.

– If the synchronization rule isone, then an edge labeled
C:ez may only be taken simultaneously with an edge la-
beledez in a single componentz ∈ Z. If a temporary link
is specified, it is assigned the componentz. The scope of
the temporary link is the action list for the transition.

– Otherwise, if the rule isall, an edge labeledC:ez must
be taken simultaneously with an edge labeledez in every
z ∈ Z.

Actions are executed in phases as follows.

(1) All components specified bycreate-expressions are created.
(2) The right-hand sides and the destinations of resets are evaluated,

and so are the component initializers.
(3) The previously computed values for resets and link actions and

component initial values are assigned to their destinations.
(4) Connection actions are executed.

3.5.3 Examples

The point massesm1, m2 andm3 are modeled in SHIFT as instantiations of
a type “pointmass”. A pointmass exposes many variables to the other com-
ponents of the world and exports a collision event. It also has a “connection”
with the mass to its right and the one to its left:

type pointmass{
output continuous number hvelocity, hposition;
output continuous number L, h;
output continuous number x,vx,y,vy;
statecontinuous number ay:=0.0;
output pointmass rightmass := nil;
output pointmass leftmass := nil;
export collisiontoright;
flow default{

x’ = vx;
vx’ = 0.0;

70 Tools for Simulation

y’ = vy;
vy’ = ay;
hvelocity = vx;
hposition = x;

} ;
discrete

on ,
off ;

transition
on− > on{collisiontoright} /*This mass collides with another one*/
when (rightmass /= nil and x>= hposition(rightmass) and vx> hve-
locity(rightmass))
do {

/*Reset my velocity*/
vx := vx*(1-0.9)/2 + hvelocity(rightmass)*(1-0.9)/2;

},

on− > on {leftmass:collisiontoright} /*Another mass collides with
this one*/
do {

/*Reset my velocity*/
vx := hvelocity(leftmass)*(1+0.9)/2 + vx*(1-0.9)/2;

},
on− > off {} /*Falling*/
when (x >= L and vx> 0 and y>= h)
do {

ay := -9.81;
},
off − > off {} /*Bouncing*/
when (y <= 0 and vy< 0)
do {

vx := 0.9*vx;
vy := -0.9*vy;

};
}

3.5. Shift 71

A point mass has two states:on andoff. In the on state, it can collide with
the mass to its right or can be hit by the mass to its left. When the point
massmi collides the mass to its rightmj, the collision eventcollisiontoright

is notified. Massmj has a transition that is synchronized with the eventleft-

mass:collisiontoright. The twoon− >on transitions inmi andmj are then taken
together at precisely the same time. Note that discrete states do not specify a
flow, i.e., the same flow, denoted by the keyworddefault, is assumed to define
the dynamics in each discrete state. Instantiation, creation and interconnec-
tion of types is done by the following code:

global threemass t :=create(threemass);
type threemass{

output pointmass m1 :=create(pointmass , L := 7.0 , h := 3.0 , x := 0.0
, vx := 3.0 , y := 3.0 , vy :=0);
output pointmass m2 :=create(pointmass , L := 7.0 , h := 3.0 , x:= 6.5,
vx:=0.0,y:=3.0,vy:=0);
output pointmass m3 := create(pointmass , L
:=7.0,h:=3.0,x:=7.0,vx:=0.0,y:=3.0,vy:=0);
discretea;
setup

do{
rightmass(m1) := m2;
leftmass(m2) := m1;
rightmass(m2) := m3;
leftmass(m3) := m2;

};
}

The three masses are created and initialized. Thethreemass type has only
one discrete state. Before entering statea the setup clause is executed and
connections among components are established.

The SHIFT source code is compiled into standard C code which is used,
together with other libraries, to generate an executable simulation file. The
user can choose between a command line and a graphical interface for de-
bugging the code. Since we could not compile the graphical user interface,
we had to rely on the textual printing ability of the SHIFT executable simula-
tion in order to show the correctness of the model.

72 Tools for Simulation

The Full Wave Rectifier Example. The full wave rectifier is modeled as a
set of components:

type diode{
output continuous number i;
input source s;
flow

res{
i = 10.0 * v(s) ;

},
zeroi{

i = 0.0;
};

discrete
forward{res},
reverse{zeroi};

transition
forward− > reverse{}
when (v(s)< 0.0) ,
reverse− > forward{}
when (v(s)>= 0.0) ;

}

type source{
output continuous number v;
output continuous number vsd;
output continuous number vs;
input load l;
input continuous number w0;
flow default{

vsd’ = -w0*w0*vs;
vs’ = vsd;
v = vs - v(l);

}

discretea;
}

type load{

3.5. Shift 73

output continuous number v;
input diode d1;
input diode d2;
flow default{

v’ = - v*10.0 + (i(d1)+i(d2))*10000.0;
}

discretea;
}

A diode is a type with two states:forward andreverse. When in forward state,
the flow that defines the output current is the Ohm’s law. When in reverse
state, the output current is set to zero. The input voltage tothe diodes is gen-
erated by two sources. Asource generates an output voltage equal to the dif-
ference of an internally generated sinusoidal waveform andthe output voltage
of a load component.

The creation and interconnection of all the components is carried out by
the following SHIFT program:

global rectifierRC r :=create(rectifierRC);
type rectifierRC{

output source s1 :=create(source , vs := 0.0, vsd := 4.0*314.0, w0 :=
314.0);
output source s2 :=create(source , vs := 0.0, vsd := -4.0*314.0,
w0:=314.0);
output diode d1 :=create(diode, i := 0.0);
output diode d2 :=create(diode, i := 0.0);
output load l :=create(load, v := 0.0);
discretea;
setup

do {

l(s1) := l;
l(s2) := l;
s(d1) := s1;
s(d2) := s2;
d1(l) := d1;
d2(l) := d2;

};

74 Tools for Simulation

}

Notice that the two sources are initialized with different values in order to
generate a sine wave and its opposite respectively fors1 ands2.

3.5.4 Discussion

SHIFT is a modeling paradigm for the description of dynamic networks of
hybrid components. The major distinction with respect to other modeling lan-
guages for hybrid systems (like CHARON, or MASACCIO) is that in SHIFT the
configuration of the examined system (calledworld in the SHIFT jargon) is
dynamic, meaning that it results from the continuous creation/destruction of
objects, each modeling a distinct hybrid sub-system. This description of net-
works of hybrid automata, which is intrinsic to SHIFT, can in principle also
be carried out using other modeling languages, but it would require additional
effort because languages like CHARON or MASACCIO are oriented towards a
static description of the modeled system.

A SHIFT component can export events. Components can label their tran-
sitions with events exported by other components. Since such events can be
emitted on automata transitions, SHIFT allows composition of hybrid systems
both in the continuous and discrete domains. The automata synchronization
feature eases the composition of models and results in compact specification
as it the case for the three mass systems.

SHIFT is both a programming language and a run-time environment for
the simulation of dynamic networks of hybrid automata [155]. A compiler for
translating a SHIFT program to a C program is also available. More recently a
new language has been developed by the research group that created SHIFT.
Its name isλ-SHIFT [156]. Like its predecessor,λ-SHIFT is a language for the
specification of dynamic networks of hybrid components and it is designed to
provide a tool to simulate, verify and generate real-time code for distributed
control systems arising in applications like AHS and the other mentioned
above. What really distinguishesλ-SHIFT from its predecessor is the syntax:
λ-SHIFT is an extension of the Common Lisp Object System (CLOS) [39,
159]. In particular, in order to provide a better use of the CLOS capabilities,
the Meta-Object Protocol (MOP) [38] has been extended to provide anopen
andspecializableimplementation of theλ-SHIFT specification language.

3.6. Charon 75

3.6 Charon

CHARON, an acronym forcoordinated control, hierarchical design, analy-
sis and run-time monitoring of hybrid systems, is a high-level language for
modular specification of multiple, interacting hybrid systems developed at
the University of Pennsylvania [3, 4, 5, 8]. CHARON is implemented and
distributed in a toolkit that includes several tools for thespecification, de-
velopment, analysis and simulation of hybrid systems. The CHARON toolkit
is entirely written in JAVA and features: a graphical user interface (GUI), a
visual input language (similar to STATEFLOW), an embedded type-checker,
and a complete simulator. The graphical input editor converts the specified
model into CHARON source code, using an intermediate XML format. The
plotter is based on a package from the modeling tool Ptolemy,developed at
U.C. Berkeley. It allows the visualization of system tracesas generated by
the simulator. The CHARON toolkit is also fully compatible with external
programs written in JAVA ; the simulator itself is an executable Java program.
The CHARON toolkit Version 1.0 is freely distributed and can be downloaded
from http://www.cis.upenn.edu/mobies/charon.

3.6.1 CHARON Syntax

The CHARON language enables specification ofarchitecturalas well asbe-
havioral hierarchies and discrete as well as continuous activities.

The architectural hierarchy reflects the composition of distinct processes
working in parallel. In this framework, the basic building block is represented
by anagent. Agents model distinct components of the system whose execu-
tions are all active at the same time. They can be of two types:primitive and
composite. Primitive agents are the primitive types or basic building blocks
of the architectural hierarchy. Composite agents are derived byparallel com-
positionof primitive agents. Other main operations supported by agents are
variable hidingandvariable renaming. The hiding operator makes a speci-
fied set of variables private or local, that is other agents cannot access private
variables for read/write operations. Variable hiding implementsencapsula-
tion for data abstraction. Variable renaming is for supporting instantiation of
distinct components having the same structure. Agents communicate among
themselves and with the external environment by means of shared variables,

76 Tools for Simulation

which represent input/output/state signals of the overallhybrid system.
The behavioral hierarchy is based on the sequential composition of sys-

tem components acting sequentially in time. Such components are called
modes. Modes represent the discrete and continuous behaviors of an agent.
Each agent consists of one or more distinct modes that describe the flow of
control inside an agent. Modes can contain the following elements: control
points (entry points, exit points), variables (private, input, output), continu-
ous dynamics, invariants, guards, and nested submodes.Control pointsare
where the flow of control enters or exits the given mode. The execution of
the mode starts as soon as the flow of control reaches an entry point and ends
when it reaches an exit point. Aguard conditioncan be associated to each
control point (entry point or exit point). A guard conditionis a rule or a set
of rules enabling the control flow to actually go trough a given entry or exit
point, i.e. enabling the hybrid systems to make ajumpor discrete transition.
As for agents, variables in a mode represent discrete or continuous signals. In-
put and output variables represent respectively input and output signals of the
agent, while private variables either represent state signals, which are not vis-
ible externally, ortrue auxiliary variables such as those necessary to perform
some functional computation. Modes can beatomicor composite; compos-
ite modes contain nested submodes which can themselves be composite or
atomic. Modes can have three types of constraints:

• invariants: the flow of control can reside in a mode as long as
an inequality condition, called theinvariant, is satisfied (e.g. ifx
andy are two variables, an invariant can be of the form|x − y| ≤

ε). When invariants are violated the flow of control must exit the
active mode from one of its exit points.

• differential constraints: these are used for modeling continuous
dynamics evolving in the current mode (e.g. by differentialequa-
tions, like:ẋ = f(x, u)).

• algebraic constraints: algebraic equations model resets of vari-
ables occurring during discrete transitions of the hybrid system.
The values of the variables are reassigned using an algebraic ex-
pression, such asy = g(x, u).

Agents and modes are represented as tuples. IfT = (t1, . . . , tn) is a tuple

3.6. Charon 77

then the elementti of T is denoted asT.ti. This notation can be extended to
collection of tuples, so that ifST is a set of tuples, then:

ST.ti =
⋃

T∈ST

{T.ti}

Variables should be formally distinct from their valuations: given a setV of
variables avaluation is a function mapping variables inV to their respective
values.QV denotes the set of all possible valuations overV . If s is a valuation
of variables inV andW ⊆ V , thens[W] is the restriction of the valuation
s to variables inW . Continuous-time behaviors of modes are modeled by
flows. A flow is a differentiable functionf : [0, δ] → QV , whereδ is called
thedurationof the flow.

A mode is a tuple(E,X, V, SM,Cons, T) where:

• E is a set of entry points andX is a set of exit points. There are
two particular control points: adefault entryde ∈ E and adefault
exit dx ∈ X.

• V is a set of variables, which can be analog or discrete (charac-
terizing signals for flows and jumps of the hybrid system, respec-
tively). Variables can also be local, their scope being limited only
to the active mode, or global, if they can be accessed externally.

• SM is a finite set of submodes.
• Cons is a set of constraints, which can be of three types:differen-

tial, algebraicandinvariant, as described above.
• T is a set of transitions of the kind(e, α, x), where:e ∈ E∪SM.X

andx ∈ X ∪SM.E; α, called theactionassociated to the current
transition, is a relation fromQV to QV and it updates variables
(analog or discrete and global or local) when the mode undergoes
the transitionT .

A mode withSM = ∅ is calledatomic. Top-levelmodes are composite modes
that are not contained in another mode (they can only be contained in agents);
they have only one non-default entry point and have no default exit points.

The syntax of agents is simpler than that of modes. An agent isformally
defined as a tuple(TM,V, I), whereV is a set of variables,I is a set of initial
states andTM is a set of top level modes. The set of variablesV results from
the disjoint union of the set of global variablesVg and local variablesVl;

78 Tools for Simulation

formally: V = Vg ∪Vl with Vg ∩Vl = ∅. The setI of initial states can specify
a particular initialization of the variables in the agent. The elements of an
agent can be accessed through the “dot” operator: for example, A.Vg is the
set of global variables of the agentA.

Intuitively, top-level modes inTM describe the behavior (i.e., execution
in time) of the agent. As for modes, variables in agents can belocal or global.
Primitive agents have only one top-level mode, while composite agents con-
tain several top-level modes and can be obtained as the parallel composition
of primitive agents.

The execution of an agent can be derived from those of its top-level
modes. A primitive agent has a single top-level mode, while composite agents
have several top-level modes (each possibly containing submodes) and re-
sults from the parallel composition of other agents. Execution trajectories
start from the specified set of initial states and consist of asequence of flows
interleaved with jumps, defined by the modes associated to the agent. In par-
ticular, the jumps correspond to discrete transitions of the environment or of
one of the modes of the agent, while flows are concurrent continuous execu-
tions of all the modes of the agent. Traces are obtained similarly by projecting
onto the global variables.

Agents can be combined using the operators of variable hiding, variable
renaming and parallel composition. The hiding operator makes a set of vari-
ables in an agent private. Given an agentA = (TM,V, I), the restriction to
Vh is the agentA\{Vh} = (TM,V ′, I) with V ′

l = Vl∪Vh andV ′
g = Vg−Vh.

The renaming operator makes a replacement of a set of variables inside an
agent with another set of variables. This is useful for interfacing the agent
with its external environment (i.e. with other agents). LetV1 = {x1, . . . , xn}

andV2 = {y1, . . . , yn} be indexed sets of variables withV1 ⊆ A.V . Then
A[V1 := V2] is an agent with the set of global variables(A.Vg−V1)∪V2. Par-
allel composition is used to combine agents to form a hierarchical structure.
The parallel compositionA1 ||A2 of the two agentsA1 andA2 is an agentA
defined by the following relations:

• A.TM = A1.TM ∪ A2.TM
• A.Vg = A1.Vg ∪ A2.Vg andA.Vl = A1.Vl ∪ A2.Vl

• if s ∈ A.I thens[A1.V] ∈ A1.I ands[A2.V] ∈ A2.I

3.6. Charon 79

3.6.2 CHARON Semantics

Modes can exhibit both a continuous and discrete behavior, but not at the
same time: this implies that a mode undergoes a sequence ofjumps (dis-
crete transitions) andflows(continuous executions). During a flow the mode
follows a continuous trajectory subject to the corresponding differential con-
straints. As soon as the trajectory no longer satisfies the invariant constraints,
the mode is forced to make a discrete transition.

A jump is a finite sequence of discrete transitions of submodes and tran-
sitions of the mode itself that are enabled by the corresponding guards. Any
discrete transition starts in the current active state of the mode and terminates
as soon as either aregular exit point is reached or the mode yields control to
its external environment via one of its default exit controlpoint.

Formally, the semantics of a mode is represented by its set ofexecutions.
An execution is a path through the transition graph induced by the mode and
its submodes of the form

(e0, s0)
λ1−→ (e1, s1)

λ2−→ · · · λn(en, sn),

whereei is a control point andsi a state in the form of a variable evalua-
tion. The transitionsλi represent either discrete jumps or flows. Jumps can
be taken by the mode, in which case they are denoted by a circleo, or by the
environment (changes to the global variables of the mode by other compo-
nents while the mode is inactive), denoted byε. The initial and final statesi

andsi+1 of a jump, as well as the corresponding control points must becon-
sistent with the transitions and the corresponding action labels of the mode.
Otherwise,λi is a flowfi of si−1 defined over[0, t] (the duration of the flow),
and such thatfi(t) = si. Externally, the semantics of a mode is represented
by its set oftraces, which are obtained by projecting the executions onto the
global variables of the mode. That is, a trace is obtained from each execution
by replacing everysi with si[Vg], and everyf in transition labels withf [Vg].

Compositionality. The semantics of CHARON iscompositionalin the sense
that the semantics of one of its components (possibly the entire hybrid sys-
tem) is entirely specified in terms of the semantics of its subcomponents.
Compositionality holds for both agents and modes. Indeed, the set of traces
of a given mode is determined by the definition of the mode itself and by

80 Tools for Simulation

the semantics of its submodes. For a composite agent the set of traces can be
reconstructed from the traces of its top-level modes.

Compositionality results can be extended to the operators on agents by
introducing a refinement relation on modes and agents. A modeM refines
a modeN , written M � N , if it has the same global variables and control
points, and every trace ofM is a trace ofN . The compositionality properties
implies that ifM.SM � N.SM , thenM � N .

Similarly, an agentA refinesan agentB if A.Vg = B.Vg, and every
trace ofA is a trace ofB. Compositionality results holding for modes can
be naturally extended to agents because an agent is basically a collection of
modes with synchronized flows and interleaving jumps. In particular agent
operators arecompositional with respect to refinement. Formally, the result
states that the operations on agents are monotonic relativeto the refinement
order. Thus, assumeA � B, A1 � B1 and A2 � B2 are agents,V1 =

{x1, . . . , xn} andV2 = {y1, . . . , yn} are indexed sets of variables withV1 ⊆

A.V , and letVh ⊆ A.V . Then,A \ {Vh} � B \ {Vh}, A[V1 := V2] �

B[V1 := V2] andA1 ||A2 � B1 ||B2. This result is particularly useful to help
reduce the complexity of refinement verification by applyingcompositional
techniques. In practice, refinement can be verified at the component level
using predicate abstraction (to reduce the complexity to a finite state model),
and can be extended to the entire system using the compositionality result [4].

3.6.3 Examples

The CHARON distribution comes with a graphical user interface for the spec-
ification of agents, modes and their interconnection. CHARONV ISUAL is a
Java front-end that can be used to input a hybrid system specification. In ad-
dition, CHARONV ISUAL can generate a CHARON netlist that can be compiled
and simulated. Figure 3.20 shows a model of the full wave rectifier circuit.
The system is composed of four agents: two diodes, a load and asource block.
A diode has two modes: forward and reverse. A project is stored in an XML
file with all the model as well as graphical information. The diode agent con-
tains a top mode defined by the following code snippet:

modeDiodeTop()
read analog realvin;
readWrite analog real iout;

3.6. Charon 81

Fig. 3.20 CHARON model of the full-wave rectifier circuit.

modeFInst = forward();
modeRInst = reverse();
trans startfrom defaultto FInstwhen truedo { }

trans F2R from FInstto RInstwhen (vin < 0) do { }

trans R2F from RInstto FInstwhen (vin > 0) do { }

The forward mode is described as follows:

modeforward()
readWrite analog real iout;
read analog realvin;
inv Finv { vin >= 0 }

82 Tools for Simulation

Fig. 3.21 CHARON simulation results of the full-wave rectifier with RC load.

algeOuteq{ iout == vin }

In forward mode the diode’s output current is proportional to the inputvoltage
by a constant that in this case we assume to be equal to one. Therelation be-
tween input voltage and output current is declared in an algebraic constraint.
The invariant constraint declares that a diode stays inforward mode as long
as the input voltage is greater than or equal to zero. When theinvariant is
violated, the output transitionF2R is enabled and the diode switches to the
reverse mode whose output current is equal to−I0.

The load is modeled as a dynamical system:

agentRCload()
read analog reali2;
read analog reali1;
readWrite analog real vl;
init { vl = 0 }

modetop = RCloadTopMode(0.00001, 1000);

modeRCloadTopMode(real C, real R)
read analog reali2;

3.6. Charon 83

read analog reali1;
readWrite analog real vl;
diff Loadeq{ d(vl) == -vl/(R * C) + (i1 + i2)/C }

It has one mode of operation that declares one differential constraint for the
load voltage. Simulation results are shown in Figure 3.21.

The Three-Mass Example. We model the three-mass system with only one
agent in order to show how modes can be hierarchically organized. The hybrid
system model is very similar to the SIMULINK /STATEFLOW one. The minor
differences concern the invariant specification. Figure 3.22 shows the com-
plete model. Each mode is characterized by the same differential constraint
that specifies the motion of the three masses:

diff motion{
d(vx1) == 0.0 ; d(x1) == vx1 ; d(vy1)==ay1 ; d(y1)==vy1;
d(vx2) == 0.0 ; d(x2) == vx2 ; d(vy2)==ay2 ; d(y2)==vy2;
d(vx3) == 0.0 ; d(x3) == vx3 ; d(vy3)==ay3 ; d(y3)==vy3

}

Differently from SIMULINK /STATEFLOW and other tools like HYV I-
SUAL that have triggering transition semantics, CHARON has enabling se-
mantics meaning that a system is allowed to stay in a mode as long as the
invariant constraint is satisfied (even if a guard on a transition is also satis-
fied). Therefore, we must declare in each mode an invariant constraint that is
the conjunction of the complement of the guards on the outputtransitions. To
this end, we have to distinguish, for instance, modem3bounce (wherem2

andm1 are still on the table) from modem3purebounce (where all masses
have fallen from the table). The reason is that in the first case m1 andm2

can still collide, thereby requiring a transition to modem1tm2, while in the
second case the collision cannot happen. Figure 3.23 shows the simulation
result. First we note that, in the simulation, the balls keepmoving to the right,
despite the fact that, because the system is Zeno, they shouldn’t move past
a certain point. This artifact is a consequence of the minimum time imposed
by CHARON in traversing each state, a condition that causes time to always
progress. Second, the balls (correctly) do not fall below the floor level, con-
trary to the other tools that we have evaluated. This is because the transitions

84 Tools for Simulation

Fig. 3.22 CHARON model of the three-mass system.

are not only sensitive to events, i.e., changes in the valuesof the variables
that may go undetected because of the size of the integrationstep, but are
also forced by the violation of the state invariants, which are static constraints
evaluated on the present value of the variables.

3.6. Charon 85

Fig. 3.23 CHARON simulation result of the three-mass system.

3.6.4 Discussion

By combining the notions ofagentand modethe language CHARON sup-
ports the hierarchical modeling of hybrid systems both at the architectural
and behavioral level. For the hierarchical description of the system architec-
ture, CHARON provides the operations of instantiation, hiding, and parallel
composition on agents, which can be used to build a complex agent from
other agents. Modes are used to describe the discrete and continuous behav-
iors of an agent. For the hierarchical description of the behavior of an agent,
CHARON supports the operations of instantiation and nesting of modes. The
description of complex discrete behaviors is facilitated by the availability of
features such as weak preemption and history retention, as well as by the pos-
sibility of invoking externally defined JAVA functions. Continuous behaviors
can be specified using differential as well as algebraic constraints, and invari-
ants restricting the flow spaces, all of which can be declaredat various levels
of the hierarchy. Guard conditions in CHARON are enabling and not triggering
like, for instance, in HYV ISUAL. This means that an enabled guard condition
may or may not necessarily be taken. This is an important point to keep in
mind when one builds a CHARON model that uses triggering transitions as
in the case of the three-mass example. Invariants are checked at run-time and
an error is reported when an invariant is violated and no transition is enabled.

86 Tools for Simulation

Unfortunately, this is one of the few debugging features offered by the current
implementation of CHARON.

The modular structure of the language is not merely syntactic, but it is
exploited by analysis tools and it is supported by a formal semantics with
an accompanying compositional theory ofmodular refinement[6, 7]. Com-
positionality is obtained by restricting the way in which a hybrid system is
specified. In general, every tool that targets verification and synthesis imposes
restrictions on the input specification, while more freedomis left to the de-
signers by those tools that target simulation like SIMULINK /STATEFLOW and
MODELICA.

4
Tools for Formal Verification

This chapter is dedicated to the tools (all coming from academia) for the for-
mal verification of hybrid systems. Formal verification is very appealing as a
concept since it avoids the pitfalls of simulation that cannot guarantee design
correctness. Formal verification is intended toprovethat some properties hold
for all admitted modes of operation of the system under analysis. Its power
is limited by the complexity of the analysis that grows very large as the size
of the system increases beyond fairly simple designs. The best way to use
formal verification is by leveraging abstraction to build models that have few
variables but do not lose the accuracy necessary to model thephenomena of
interest.

Formal verification amounts to an intelligent exhaustive search in the in-
put space of the designs. Intelligence lies in the exploration mechanisms and
in avoiding searches in uninteresting parts of the input space. Formal verifica-
tion allows one to identify errors by backtracking mechanisms in the search
space that provide an example of faulty behavior and that canbe used to de-
bug the system.

For dynamical systems, safety properties [126] are the easiest to check.
Safety is related to the impossibility of the system to entera “bad” set of
states. To check for this condition, all the formal verification tools reviewed

87

88 Tools for Formal Verification

here use some sort ofreachabilityanalysis, i.e., they identify the set of states
that can be reached from a set of initial conditions under a set of allowable
inputs.

We begin our review with HYTECH, the first tool to be developed for the
formal verification of a class of hybrid systems. We follow with an analy-
sis of MASACCIO, a language that was developed by the same investigators
as HYTECH, but that addresses a very important topic in formal methods:
compositionality. Compositionality makes it possible to infer properties of
an ensemble from the properties of its components, thus decreasing the com-
plexity of the overall analysis. CHECKMATE, developed at CMU, is likely
the most used tool for formal verification of hybrid systems.One of the most
interesting features of CHECKMATE is its input language, a subset of the
SIMULINK language, hence offering a nice environment where simulation,
carried out with a popular tool, and formal verification can go hand-in-hand.

If there is indeed a chance that the system may enter a bad state, then for-
mal verification tools can be used to synthesize a controllerthat, if it exists,
keeps the system away from the bad states. HYSDEL andd/dt are both con-
troller synthesis tools and, for this reason, are of particular interest for the de-
velopment of embedded controllers. In particular, HYSDEL is appealing since
it is based on well-developed piecewise-linear techniquesand mathematical
programming. However, HYSDEL requires an initial discretization step left
to the user that converts continuous dynamics into a discrete one. The dis-
cretization step requires choosing the sampling time that has to be selected
depending on thefastestdynamics of the system even if in some region the
system evolution is much slower.d/dt even though it uses the most advanced
techniques known today, still suffers from limitations in expressive power and
high complexity. We conclude the chapter with a descriptionof the toolboxes
that have been recently developed based on the use of theellipsoidal calculus
to compute approximations of continuous sets.

Reachability analysis has been the suject of much research work in the
recent past and several toolboxes have been developed to compute reachable
sets efficiently. Among these, MATISSE [74, 75] is of particular interest for
hybrid systems. Given a constrained linear system, MATISSEcomputes a
lower dimensional approximation of the system, and provides error bounds
for this approximation using an approximate bisimulation relation that cap-
tures the most significant characteristics of the system dynamics. The preci-

89

sion of the bisimulation provides a bound of the distance between the trajec-
tories of the system and of its abstraction. The toolbox checks if the distance
of the unsafe set from the reachable set of the abstraction ofthe system is
greater than the precision of the approximate bisimulation. If that is the case,
then the original system is safe. Because these toolboxes are not specific to
hybrid systems, we will not cover them here in detail, and refer the interested
reader to the rich literature covering the topic [138].

An excellent review of the state-of-the-art tools for formal verification of
hybrid systems was published in 2001 by Silva et al [154]. Thetools reviewed
included HYTECH, CHECKMATE, d/dt, UPPAAL (an integrated tool envi-
ronment for modeling, validation and verification of real-time systems that
are modeled as networks of timed automata, extended with data types such as
bounded integers, arrays, etc.) [34, 58], and VERDICT (a framework for the
modeling of hybrid systems described as Hybrid Condition/Event Systems
(HCES) in the CELESTE language that provides translation from CELESTE

to the input format of other tools such as HYTECH) [161]. These tools were
compared and analyzed using a simple digital-control problem: a chemical
batch reactor that became the workhorse example for formal verification. The
comparison was made on the basis of expressive power and features such as
the capability of running simulations, the possibility of specifying constraints
in temporal logic and the presence of a graphical user interface. The paper
contains also a section discussing the features that these tools must offer in
order to reach industrial success for the design of embeddedcontrol systems.
In particular the authors advocate that

• developers of formal verification tools enable the reuse of existing
models of plant and controllers;

• tools for interactive model building and analysis interpretation be
provided since, as we also argued, complexity can be beaten only
by using appropriate abstractions of detailed models;

• aids be given to translate informal requirement specifications into
formal specifications, since formal specifications are quite difficult
to write for practicing engineers.

We agree with most of the conclusions of the authors and we chose not to
repeat their analysis. Our review focuses onbona fidehybrid-system tools.
Hence, we do not consider all timed-automaton-only tools such as UPPAAL,

90 Tools for Formal Verification

KRONOS(a model checker for hybrid automata) [43, 60] and TAXYS (an ex-
tension of KRONOSwith a compiler for programs written in the synchronous
language ESTEREL) [37, 53]. Since we focus in this chapter on environments
that offer verification algorithms, we also excluded VERDICT from consider-
ation.

We tried several formal verification tools on realistic hybrid examples in
the automotive domain. We have concluded that without significant effort in
abstraction and modeling, the tools would simply not be adequate for indus-
trial strength examples. Much research is needed to bring the tools and the
frameworks to a degree of maturity that will make them usableby design
engineers.

4.1 Introduction to Verification Methods

A simulator for hybrid systems solves the following problem: given an initial
discrete location (or state) and an initial value for the continuous variables,
compute a temporal sequence of hybrid states that complies with the speci-
fication of the system and its semantics. At each point in time, a simulator
computes one location and one value for all the variables. Inpresence of
non-determinism or uncertainty, a simulator has to make a choice in order
to produce a unique value. For deterministic systems, and for a unique (or a
limited set) of initial condition, simulation could be a good analysis tool. In
many cases, the initial condition belongs to a set and simulating the system
for all possible initial conditions is not possible. Moreover, due to abstraction
and parameters that are not known in the early design stage, the system is
non-deterministic. Simulation is not the right tool to use for analysis in these
cases because the ability of discovering corner cases is left to the experience
of the designer. One would like to know if it is possible, for any of the system
behavior, to reach a state in the system that leads to undesirable events. This
requires to check whether a hybrid state is reachable for allinitial conditions
and all possible choices of non-deterministic values.

The reachability problemcan be stated as follows (and its formulation is
independent of the discrete, continuous or hybrid nature ofthe system): given
two statesσ andσ′ of a system, isσ′ reachable fromσ?

For discrete time systems, the reachability problem has been extensively
investigated. There is a conspicuous set of powerful tools for verification of

4.1. Introduction to Verification Methods 91

discrete systems like SMV [44] and SPIN [103].
Verification for continuous and hybrid systems is particularly challenging

because the reachable set of states is uncountable. Continuous variables, in
fact, range over intervals of real numbers. As in the case of discrete systems,
where reachable states are implicitly represented for example using binary de-
cision diagrams, a suitable representation for sets of states has to be chosen.
Such representation must be compact and have an efficient implementation.
The choice depends on many factors, but the most important are the complex-
ity of the operations to be performed on sets of states and thememory space
needed to store the representation.

Consider affine hybrid systems. The dynamics, in each discrete location
l, are equations of the forṁx = Alx + Blu. Let l0 be the initial location and
X0 ⊆ R

n be the set of initial states for the continuous vector ofn variablesx.
Intuitively, one would let time elapse while in locationl0 and compute the set
of reachable states until the invariantInv(l0) is violated. In order to compute
such set, one has to be able to perform the following sequenceof operations:

(1) rotate a set to computeX ′ = {Al0x|x ∈ X0};
(2) compute the geometric sum of two sets

X ′′ = X ′ + {Bl0u|u ∈ U};
(3) perform the intersectionX ′′′ = X ′′ ∩ Inv(l0);
(4) check ifX ′′′ is empty.

Once the set of reachable states has been computed in one location, it has
to be intersected with the guards of the outgoing transitions to determine the
reachable locations.

The complexity of the four operations on sets introduced above depends
on how such sets are represented. While various representations based on dif-
ferent geometric primitive objects are possible, the two most important ones
are based on polyhedra (e.g.[13] and [97]) and ellipsoids [41, 113]. Depend-
ing on the dynamics of a system, the reachable set can be represented exactly
using unions of polyhedra (as in the case of constant rate systems) or it can
just be over-approximated.

Consider the case where we want to check if a system can reach astate
that belongs to a set of bad statesSbad. This problem can be solved by com-
puting the reachable setR and checking ifR ∩ Sbad 6= ∅. For general dy-
namics, however, we can only computeR′ ⊇ R, an over-approximation of

92 Tools for Formal Verification

the reachable set. Consequently, if the verification resultis that the over-
approximated system is safe then we can also claim that the system is safe
becauseR′ ∩ Sbad 6= ∅ ⇒ R ∩ Sbad 6= ∅. If, instead, we determine that the
over-approximated system is not safe, then we cannot make any claim on the
safety of the actuall system and the over-approximation must be refined in
order to improve its accuracy. Unfortunately, for general dynamics the reach-
ability problem is undecidable [99], therefore a verification algorithm based
on successive refinement is not guaranteed to terminate.

4.1.1 The Full-Wave Rectifier Revisited

In this section we revisit the full-wave rectifier example already introduced
in Section 2.2. We want to verify that for a given input voltage vin = A ·

sin(2πf0t) with A ≈ 4V andf0 ≈ 50Hz, and an initial conditionvout(0) ≈

4V , at any timet the output voltagevout(t) does not drop below a certain
thresholdvmin.

Since most of the verification tools only allow linear dynamics, we use a
second order differential equation to model the sinusoidalinput. Also, we use
two state variablesx0 andx1 such that:

(
ẋ0

ẋ1

)
=

(
0 1

−(2πf0)
2 0

)(
x0

x1

)

with initial conditionsx0 = −A/(2πf0) andx1 = 0. The solution of this sys-
tem givesx1 = A · sin(2πf0t). The uncertainty on the oscillation frequency
translates into an uncertainty on the initial condition andthe system matrix.
The uncertainty on the amplitude translates into an uncertainty on the initial
condition only.

If we model the sinusoidal input, the system becomes autonomous. Even
if some of the tools also allow the specification of bounded inputs, we explic-
itly model the voltage source.

We also eliminate theonon discrete state. This choice is motivated by the
fact that, in order to have both diodes on, we must havevin ≥ vout ∧−vin ≥

vout which impliesvout ≤ 0 that, in our circuit, is never true. The hybrid
automaton that models the full-wave rectifier is shown in Figure 4.1 where
we renamedvin to x1 andvout to x2.

4.2. Hytech 93

Fig. 4.1 Hybrid automaton of the revisited full-wave rectifier

4.2 Hytech

HYTECH is a symbolic model checker forlinear hybrid automata, a sub-
class of hybrid automata that can be analyzed automaticallyby computing
with polyhedral state sets [10, 11, 90, 91, 98]. The development of HYTECH,
a joint effort by T. Henzinger, P. Ho and H. Wong-Toi, went through three
phases [91]. The earliest version of HYTECH, developed at Cornell Univer-
sity, was built on top of the commercial tool MATHEMATICA [174] and lin-
ear predicates were represented and manipulated as symbolic formulas [10].
Based on the observation that a linear predicate overn variables defines a
union of polyhedra inRn, the second generation of HYTECH [90] combined
a MATHEMATICA main program with calls to a library of efficient routines
for polyhedral operations [86]. This change provided a speed-up of one or-
der of magnitude with respect to the first prototype. The third generation of
HYTECH is a fully-rewritten C++ program that is two to three orders of mag-
nitude faster than the previous one. This implementation ofHYTECH, how-
ever, uses exact arithmetic and suffers from overflow errors. It’s successor,
HYPERTECH, uses interval arithmetic and is able to model more complicated
dynamics. A detailed guide to the last version as well as to HYTECH-related

94 Tools for Formal Verification

papers is given in [91].
HYTECH takes two inputs: a hybrid system description and a set of analy-

sis commands. The hybrid system, which is modeled as a collection of linear
hybrid automata, is specified textually using the HYTECH system description
language [91]. A linear hybrid automaton consists of a finitecontrol graph
whose nodes are calledcontrol modesand whose edges are calledcontrol
switchestogether with a setX of continuous variables. The continuous dy-
namics within each control mode are subject to a constant polyhedral dif-
ferential inclusion, while the discrete dynamics are modeled by the control
switches each of which has a guard condition and a reset condition overX.
A state is a pair consisting of a control mode and a vector of variable val-
ues. Before drafting the textual description, the users of HYTECH must (1)
identify the concurrent components of the system (and the communication
mechanisms between the components), (2) model each component using a
hybrid automaton, and (3) conservatively approximate eachhybrid automa-
ton with a linear hybrid automaton. While (1) and (2) are common to most
of the tools that we take into account (if they support composition), the last
step is required in order to model complex continuous dynamics using linear
dynamics. HYTECH processes the textual specification and derives a model
for the whole system by performing a parallel composition asthe product of
these automata. The analysis commands are given using a simple command
language that allows the specification of iterative programs for performing
formal verification tasks such as reachability analysis anderror-trace genera-
tion.

4.2.1 HYTECH Syntax

HYTECH models a hybrid systems as the parallel composition of linear hy-
brid automata (LHA). A LHA uses an ordered setX = {x1, x2, ..., xn}

of real-valued variables to model continuous activities. All variables in the
system are global and declared at the beginning of a hybrid system descrip-
tion and can be of typediscrete , clock , stopwatch , parameter , or
analog . A valuationV(X) is a function that associates a point inR

n to X.
A linear expressionover X is a linear combination of variables inX with
rational coefficients. Alinear inequalityis an inequality between two linear
expressions and aconvex predicateis a finite conjunction of linear inequali-

4.2. Hytech 95

ties. Apredicateis a finite disjunction of convex predicates, defining a set of
valuations.

An linear hybrid automaton is defined by a set of discrete states or loca-
tions, initial conditions, invariant conditions, transitions and rate conditions
where:

• locationsare control modes that are used to define the discrete
states of the automaton. LetV = {v1, v2, ..., vl} be the set of
locations;

• the initial condition is a predicate overX;
• invariant conditionsare convex predicates overX. For a location

v, inv(v) is the invariant associated with that location;
• transitionsare labeled edges between locations. LetE ⊆ V × V

be the set of edges. An edge is labeled with anupdate setand a
jump condition. The update setY is a subset ofX and the jump
condition is a convex predicate overX ∪ Y ′, where primed vari-
ables refers to the value of the variables after the transition. For a
transitione = (vi, vj) from locationvi to locationvj, labelact(e)

denotes the condition associated to the transition;
• rate conditionsare convex predicate oveṙX where for a variable

x ∈ X, ẋ ∈ Ẋ denotes the rate of change ofx. For a locationv,
dif(v) is the rate condition associated to that location;

• synchronization labelsis a finite setL of labels. A labeling func-
tion syn assigns a subset of labels fromL to each edge. Synchro-
nization labels are used to compose automata.

Commands are built using objects of two basic types:region expressions
for describing regions of interest, andboolean expressionsthat are used in the
control of command statements. Regions may be stored in variables, provided
the region variables are declared via a statement such as

var init reg, final reg: region;

which declares two region variables calledinit reg andfinal reg. HYTECH pro-
vides a number of operations for manipulating regions, including comput-
ing the reachable set, successor operations, existential quantification, convex
hull, and basic boolean operations. For added convenience,there are built-

96 Tools for Formal Verification

in macros for reachability analysis, parametric analysis,the conservative ap-
proximation of state assertions [89], and the generation oferror trajectories.

Parametric Analysis. An important feature of HYTECH is the ability to
perform parametric analysis, i.e. to determine the values of design parameters
for which a linear hybrid automaton satisfies a temporal-logic requirement.
With parametric analysis, model checking can be used to go beyond the mere
confirmation that a system is correct with respect to certainrequirements.
While completing the specification of a system, the users candecide to in-
troduce some parameters as symbolic constants with unknown, fixed values.
These values will be defined only later at the design implementation stage.
Meanwhile, parametric analysis makes it possible to determine necessary and
sufficient constraints on the parameters under which safetyviolations cannot
occur. Common uses for parametric analysis include determining minimum
and maximum bounds on variables, and finding cutoff values for timers and
cutoff points for the placement of sensors.

4.2.2 HYTECH Semantics

At any time instant the state of a hybrid automaton is defined by a control
location and a valuation of all variables inX. The state can change because
of a location change or because time elapses. Adata trajectory(δ, ρ) of a
linear hybrid automaton consists of a non-negative duration δ ∈ R≥0 and
a differentiable functionρ : [0, δ] → R

n. A data trajectory(δ, ρ) is a v-
trajectory for a locationv, if for all reals t ∈ [0, δ], ρ(t) satisfiesinv(v)

and ρ̇(t) satisfiesdif(v). A trajectory of a hybrid automaton is an infinite
sequence:

(v0, δ0, ρ0) → (v1, δ1, ρ1) → (v2, δ2, ρ2) → ...

of locationsvi andv-trajectories(δi, ρi) such that∀i ≥ 0, there is a transition
ei = (vi, vi+1) and(ρi(δi), ρi+1(0)) satisfiesact(ei).

A hybrid system is modeled in HYTECH as a composition of lin-
ear hybrid automata that coordinate through variables and synchroniza-
tion labels. LetA1 = (X1, V1, inv1, dif1, E1, act1, L1, syn1) and A2 =

(X2, V2, inv2, dif2, E2, act2, L2, syn2) be two linear hybrid automata of di-
mensionn1 and n2, respectively. The productA1 × A2 is a linear hybrid
automatonA = (X1∪X2, V1×V2, inv, dif,E, act, L1 ∪L2, syn) such that:

4.2. Hytech 97

• for each location(v, v′) ∈ V1 × V2, inv(v, v′) = inv1(v) ∧

inv2(v
′) anddif(v, v′) = dif1(v) ∧ dif2(v

′) ;
• E contains the transitione = ((v1, v

′
1), (v2, v

′
2)) if and only if

(1) v1 = v′1 and there is a transitione2 = (v2, v
′
2) ∈ E2 with

L1 ∩ syn(e2) = ∅ ; or

(2) there is a transitione1 = (v1, v
′
1) ∈ E1 with syn(e1) ∩

L2 = ∅, andv2 = v′2; or

(3) there are transitionse1 = (v1, v
′
1) ∈ E1 and e2 =

(v2, v
′
2) ∈ E2 such thatsyn(e1) ∩ L2 = syn(e2) ∩ L1.

In case (1),act(e) = act2(e2) andsyn(e) = syn2(e2). In case
(2),act(e) = act1(e1) andsyn(e) = syn1(e1). In case (3),act(e)

has the update set equal toY1 ∪ Y2, the jump condition that is
the conjunction of the jump conditions, andsyn(e) = syn(e1) ∪

syn(e2).

Symbolic Model Checking. Model checking-based formal verification is
performed by considering the state space of the system modeland automat-
ically checking it for correctness with respect to a requirement expressed in
temporal logic [51]. In particular,symbolic model checkingmakes it possi-
ble to do so more efficiently by using constraints that represent state sets,
thereby avoiding the full enumeration of the entire state space [44, 52, 139].
Whenever a system fails to satisfy a temporal-logic requirement, a model
checking tool generates an error trajectory, i.e. a time-stamped sequence of
events that leads to the requirement violation. This is an important feature
because designers can use error trajectories for debuggingthe system. The
model-checking approach has been extended to several classes of infinite
state-transition systems, includingtimed automata[1, 93]. The symbolic rep-
resentation of state sets is necessary for timed automata due to the presence
of real variables that have infinite domains.

Timed Automata and Linear Timed Automata. With symbolic model
checking, timed automata can be effectively analyzed by manipulating sets of
linear constraints. For timed automata, these linear constraints are typically
disjunctions of inequalities whose components are bounded, e.g.,x − y ≤ b

98 Tools for Formal Verification

wherex, y are real vectors andb is a constant integer vector. Time automata
have a finite bisimilar quotient meaning that it is possible to partition the state
space in a finite number of regions and obtain a finite transition system where
transitions are in bijection with transitions of the original system. Therefore,
the quotient system is safe if and only if the original systemis safe. This prop-
erty allows one to perform verification on a finite automaton.Linear hybrid
automata[11] are an extension of timed automata where the linear constraints
can be disjunctions of inequalities of the formAẋ ≤ c whereA is a constant
matrix andc a constant vector. The consequence of this extension, however, is
that the bisimilar quotient transition system could have aninfinite number of
states. Therefore, model checking is no longer guaranteed to terminate. Still
termination occurs often in practice and, when it does not, it can be enforced
by considering the system behavior over a bounded interval of time [98].

Linear hybrid automata are more expressive compared to other for-
malisms for which model checking is possible, such as finite automata and
timed automata. That notwithstanding, there are still manyembedded appli-
cations that do not satisfy the linearity requirement. In these cases, it is pos-
sible to derive aconservative approximationof the system in terms of linear
hybrid automata, so that the satisfaction of the correctness requirement by
the approximated model guarantees the correctness of the original system as
well [92]. On the other hand, when the approximate system violates the re-
quirement it is necessary to (1) check if the generated errortrajectory belongs
to the original system and (2) refine the approximation whenever this is not
the case.

4.2.3 Example

In order to model the full-wave rectifier in HYTECH we have to approximate
its behavior. The approximation is required because the circuit dynamics can-
not be written as convex predicates onẊ . For instance, when diodeD1 is in
the on state andD2 is in the off state, the dynamics describing the continuous
evolution of the output voltage iṡvout = (vin − vout)/(RfC) − vout/(RC)

that is a linear expression over both the variables and theirfirst derivatives.
We approximate the circuit as follows. The sinusoidal voltage source is

approximated by a triangular voltage source as shown in Figure 4.2. Between
the two bounds, we select the one that is indicated aslower in the figure.

4.2. Hytech 99

t

v
upper

lower

Fig. 4.2 Upper and lower bound lines for the approximation ofthe sinusoidal voltage source.

The state variables are the input voltagevin, the output voltagevout and
a clock variablep that is used to switch the voltage source between positive
and negative first derivative.

var
x, – vin
v : analog; – vout
p : clock;

The voltage source is described by the following automaton:
automaton voltagesource
synclabs: ;
initially up & x = -4 & p = 0;
loc up: while p < 1/100 wait { dx = 800}

whenp= 1/100 do { p’= 0} goto down;
loc down:while p< 1/100 wait { dx = -800}

whenp= 1/100 do { p’= 0} goto up;

end–voltagesource

the clock variablep switches the sign of the derivative every half period.
The rest of the circuit is modeled by the following automaton:

automaton circuit
synclabs:;
initially offoff & v = 4;
loc onoff: while x >= v & v + x >= 0 wait { dv= 800}

whenx <= v & v + x <= 0 do { v’ = v } gotooffon ;
whenx <= v & v + x >= 0 do { v’ = v } gotooffoff ;

loc offon: while x <= v & x + v <= 0 wait { dv= 800}

100 Tools for Formal Verification

whenx >= v & v + x >= 0 do { v’ = v } gotoonoff ;
whenx <= v & v + x >= 0 do { v’ = v } gotooffoff ;

loc offoff: while x <= v & v + x >= 0 wait { dv= −40}
whenx >= v & v + x >= 0 do { v’ = v } gotoonoff ;
whenx <= v & v + x <= 0 do { v’ = v } gotooffon ;

end–circuit

We have done two approximations:

• we have considered ideal diodes meaningRf = 0, therefore the
capacitor charges at the same rate as the input;

• in theoffoff state we consider a discharge current equal to the
maximum current of4/(R ∗ C) (where4V is the peak voltage,
R = 1KΩ andC = 100µF).

The hybrid system description is followed by the analysis description:
var init reg, final reg, reached:region;
init reg:= loc[voltagesource]=up & x=-4 & p=0 & loc[circuit]=offoff &v=4;
final reg:= loc[circuit] = offoff & v¡=4-1/2;
reached:= reach forward from init regendreach;
print reached;
if empty(final reg & reached)

then prints ”Rectifier is SAFE”;
else prints”Rectifier is UNSAFE”;

endif;

The analysis section declares the initial set as a regioninit reg defined by the
initial discrete locations for the automaton and the valuesfor the variables.
The initial set is the conjunction of discrete locations andpolyhedral regions
in the state variables space. In the analysis commands, the symbol & refers to
set intersection∩. The verification checks whether the output voltage drops
below 3.5V and also prints the set of reachable states. The output looksas
follows:

Location: down.offoff
x + 800p = 4 & 20v = x + 76 & x <= 4 & 21x + 76 >= 0

|
x + 800p = 4 & x + v = 0 & x + 4 >= 0 & 0 >= 21x + 76

Location: down.offon
x + 800p = 4 & x + v = 0 & x + 4 >= 0 & 0 >= 21x + 76

Location: down.onoff
x = 4 & v = 4 & p = 0

Location: up.offoff

4.2. Hytech 101

800p = x + 4 & x + 20v = 76 & x + 4 >= 0 & 21x <= 76
|

800p = x + 4 & v = x & x <= 4 & 21x >= 76
Location: up.offon

x + 4 = 0 & v = 4 & p = 0
Location: up.onoff

800p = x + 4 & v = x & x <= 4 & 21x >= 76
Rectifier is SAFE

For each location, the set of reachable states is reported asa disjunction
of convex polyhedra (described as a conjunction of inequalities).

HYTECH also supports parametric analysis. Parameters cannot be used in
the definition of the dynamics. In our case, this means for example that it is
not possible to directly parameterize the load resistor. Itis possible, though, to
define different locations for theoffoff state each with a different discharge
rate and check the safety property for a discrete number of possible loads.

HYTECH supports differential inclusions. It would be possible, for in-
stance, to define the input voltage rate condition to be an inclusion like dx

in [800,900]. Unfortunately the exact arithmetic used by HYTECH leads to an
overflow error.

4.2.4 Discussion

HYTECH can efficiently analyze systems modeled with linear hybrid au-
tomata, either directly or through conservative approximations. HYTECH

uses exact arithmetic that gives exact answers to the reachability question. On
the other hand, it is difficult to find accurate enough polyhedral abstractions
for many systems without computational bottlenecks. A detailed discussion
of some of the lessons learned from developing HYTECH is provided by its
authors in [94].

HYTECH users must minimize the number of continuous variables in their
models and avoid models whose neighbouring control modes present very
different rate conditions. In other words, HYTECH is better suited to high-
level system descriptions where the continuous variables have either sim-
ple dynamics or can be adequately abstracted to ones with simple dynam-
ics, e.g. rate-bounded systems. Parametric analysis with alimited number
of parameters is reported to be often successful, but the analysis of systems
with complex relationships between multiple parameters and timing constants

102 Tools for Formal Verification

generally leads to arithmetic overflow, due to algorithm implementation. In
practice, users must use HYTECH iteratively to refine their model by further
abstracting each system component or merging multiple components into a
single one. As recognized by its authors, “it is a fine art to choose a level of
abstraction that is simple enough for HYTECH to complete and yet accurate
enough for properties to be proven” [94]. We found that this statement applies
not only to HYTECH but also to all formal verification frameworks we have
worked with.

4.3 PHAVer

The Polyhedral Hybrid Automaton Verifier, PHAVER [71], is a tool for the
safety verification of hybrid systems with piecewise-constant bounds on the
derivatives. PHAVER uses exact arithmetic whose robustness is guaranteed
by the use of the Parma Polyhedral Library [26]. Safety verification reduces
again to the reachability problem, which is decidable only for a subclass of
hybrid systems called initialized rectangular hybrid automata. PHAVER uses
an on-the-fly over-approximating algorithm to approximatepiecewise affine
dynamics with the decidable subclass. Moreover, a set of algorithms have
been developed to reduce the number of bits and number of constraints that
are needed to represent polyhedral regions, improving the overall efficiency
of the verification algorithm. PHAVER has also the capability of comput-
ing simulation relations and of deciding equivalence and refinement between
hybrid automata.

4.3.1 PHAVER Syntax

PHAVER syntax is similar to the one of HYTECH. PHAVER uses hybrid I/O
automata. Given a set of variablesV , a valuation is a functionv : V → R

andV(V) is the set of all possible valuations ofV . An activity is a function
f : R+ → V(V) andact(V) is the set of activities onV . Also, a set of
activitiesS is time-invariant if forall activitiesf ∈ S and for alld ∈ R+, the
function defined asfd(t) = f(t + d) is also inS (i.e.,S is closed under time
shift).

Definition 5. A Hybrid Input/Output Automaton is a tupleH =

(L, VS , VI , VO,L,→, Act, Inv, Init) where:

4.3. PHAVer 103

• L is a finite set of locations;
• VS andVI are finite and disjoint sets of controlled and input vari-

ables, respectively.VO ⊆ VS is the set of output variables. Let
V = VI ∪ VS ;

• L is a finite set of synchronization labels;
• →⊆ L×L×2V(V)×V(V) ×L is a finite set of discrete transitions;
• Act : L → 2act(V) is a mapping that associates to each location a

set of time-invariant activities;
• Inv : L → 2V(V) is a mapping that associates to each location a

domain;
• Init ⊆ L×V(V) is a set of initial states such that(l, v) ∈ Init ⇒

v ∈ Inv(l).

The concrete syntax used to specify a hybrid automaton is also very simi-
lar to the one used by HYTECH. The general structure of a hybrid automaton
is specified as follows:

automaton aut
state var: var ident, varident,... ;
input var: var ident,varident,... ;
parameter: var ident,varident,... ;
synclabs: lab ident,labident,... ;
loc loc ident:while invariant wait { derivative};

whenguardsync label identdo { transrel } goto loc ident;
when ...

loc loc ident:while ...
end

The main difference is that PHAVER distinguishes between input and
controlled variables, whereas in HYTECH all variables are global. This dis-
tinction is important for equivalence checking. Thederivative, invariant, and
guard can be linear formulæ over the controlled and input variables, which
increases the expressive power of PHAVER with respect to HYTECH.

As in HYTECH, PHAVER defines a set of analysis commands for the
verification of a hybrid system, which are described in the next section.

104 Tools for Formal Verification

4.3.2 PHAVER Semantics and Verification Strategy

The semantics of hybrid automata is described in [2]. At any time instant the
state of a hybrid automaton is a pair(l, v) of a location and a valuation of
the controlled variables. The state can change because of a discrete transition
or because time elapses. A run of a hybrid system is then an infinite or finite
sequence of states:

σ0 7→t0
f0

σ1 7→t1
f1

σ2 7→t2
f2
7→ ...

whereσi = (li, vi), ti ∈ R+, fi ∈ Act(li), such that:

• fi(0) = vi

• for all 0 ≤ t ≤ ti, fi(t) ∈ Inv(li)
• σi

αi→ σi+1, i.e.,∃µ : (vi, vi+1) ∈ µ ∧ (li, αi, µ, li+1) ∈→

Notice that a system may stay in a location only if the location invariant is
true. Composition of hybrid automata is defined as in Section4.2.2.

The type of activities that can be modeled in PHAVER are conjunction
of linear expressions over the variables and their derivatives. These kind of
hybrid systems are called affine. Unfortunately, for affine hybrid systems the
reachability analysis is undecidable [99]. PHAVER computation is based on
Linear Hybrid Automata (LHA) that is a subclass of hybrid systems already
defined in Section 4.2. The idea is to over-approximate affinehybrid systems
with an LHA.

PHAVER implements an on-the-fly over-approximation algorithm that is
based on the following principle. Consider a locationl with invariantInv(l)

and activity specified by the conjunction of linear expressions:

m∧

i=1

aT
i ẋ + bT

i x ./i ci , ./i∈ {<,≤}

Then it is possible to approximate each linear expression with the following
simple rule:

∀i = 1, ...,m aT
i ẋ ./i ci − di di = inf

x∈Inv(l)
bT
i x

If the approximation is too coarse, a location is split in order to improve accu-
racy. We illustrate this algorithm with a simple example, which is graphically

4.3. PHAVer 105

Fig. 4.3 PHAVER approximation example.

rendered in Figure 4.3. Consider the equation

v̇ = −δv

that can be written aṡv ≤ −δv ∧ −v̇ ≤ δv. Let the invariant beβ ≤ v ≤ α.
For the two linear equations we can compute the bounds as prescribed by the
algorithm:

inf
v∈[β,α]

δv = −δα inf
v∈[β,α]

−δv = −δβ

We obtain the approximation−δα ≤ v̇ ≤ −δβ. Starting from a single point
as initial condition, we can compute the reachable set, shown in Figure 4.3,
as the area enclosed by the two linesv = −δαt and v = −δβt. If this
approximation is too coarse, we can split the location into two locations along
the hyperplanev = γ. The new locations have invariantsβ ≤ v ≤ γ and
γ ≤ v ≤ α, respectively. The reachable set is the area enclosed by thedotted
lines that refines the previous approximation. The hyperplanes along which a

106 Tools for Formal Verification

Fig. 4.4 Invariant region that confine the sinusoidal waveform.

location is split can be specified by the users who can guide the refinement
process by relying on their knowledge of the system. For a more detailed
explanation we refer the reader to [71].

4.3.3 Example

The full-wave rectifier model consists of two hybrid automata: a voltage
source and a circuit. The system of differential equations that generates the
sinusoidal waveform is marginally stable, therefore any over-approximation
would accumulate. In order to avoid this problem, an invariant can be added
to confine the input voltage in an octagon as in Figure 4.4. Thecode that
implements the voltage source is the following:

al := 0.01272; // lower bound on intersection with x0-axis
au := 0.01274; // upper bound on intersection with x0-axis
bl := 4; // lower bound on intersection with x1-axis
bu := 4; // upper bound on intersection with x1-axis

4.3. PHAVer 107

cu := 1.4143; // upper bound on sqrt(2)
al := 0.0127; // lower bound on intersection with x0-axis
au := 0.0128; // upper bound on intersection with x0-axis
bl := 4; // lower bound on intersection with x1-axis
bu := 4; // upper bound on intersection with x1-axis
cu := 1.42; // upper bound on sqrt(2)
x1min := -bu;
x1max := bu;
x0min := -au;
x0max := au;
automaton voltagesource
state var: x0, x1;
synclabs: B ;
loc l0x0: while

x0min<= x0 & x0 <= x0max &
x1min<= x1 & x1 <= x1max &
x1 >= bl-bl/al*x0 &
x1 <= cu*bu-bl/au*x0 &
0 <= x0 & x0 <= x0max &
0 <= x1 & x1 <= x1max
wait { x0’ == x1 & x1’ == -98596*x0};
when truesyncB goto l0x1;
when truesyncB goto l1x0;

loc l0x1: while
x0min<= x0 & x0 <= x0max &
x1min<= x1 & x1 <= x1max &
x1 >= bl-bl/al*(-x0) &
x1 <= cu*bu-bl/au*(-x0) &
x0min<= x0 & x0 <= 0 &
0 <= x1 & x1 <= x1max
wait { x0’ == x1 & x1’ == -98596*x0}
when truesyncB goto l0x0;
when truesyncB goto l1x1;

loc l1x1: while
x0min<= x0 & x0 <= x0max &
x1min<= x1 & x1 <= x1max &
-x1 >= bl-bl/al*(-x0) &
-x1 <= cu*bu-bl/au*(-x0) &
x0min<= x0 & x0 <= 0 &
x1min<= x1 & x1 <= 0
wait { x0’ == x1 & x1’ == -98596*x0}
when truesyncB goto l0x1;
when truesyncB goto l1x0;

loc l1x0: while
x0min<= x0 & x0 <= x0max &
x1min<= x1 & x1 <= x1max &

108 Tools for Formal Verification

-x1 >= bl-bl/al*x0 &
-x1 <= cu*bu-bl/au*x0 &
0 <= x0 & x0 <= x0max &
x1min<= x1 & x1 <= 0
wait { x0’ == x1 & x1’ == -98596*x0}
when truesyncB goto l1x1;
when truesyncB goto l0x0;

initially : $ & x0 == -0.01273 & x1 == 0;

end

The rest of the rectifier is described by the following automaton:
automaton circuit
state var: x2;
input var: x1;
synclabs: A ;
loc onoff: while

x2min<= x2 & x2 <= x2max &
x1 - x2>= 0 & -x1 -x2 <= 0
wait { x2’ == 100000*x1- 100000*x2-10*x2}
whenx1 -x2<= 0 & -x1-x2 >= 0 syncA do {x2’==x2} goto offon;
whenx1 - x2<= 0 & -x1 -x2 <= 0 syncA do {x2’==x2} gotooffoff ;

loc offon: while
x2min<= x2 & x2 <= x2max &
-x1 - x2>= 0 & x1 - x2 <= 0 wait { x2’ == -100000*x1 - 100000*x2-10*x2}
whenx1 - x2>= 0 & -x1 - x2 <= 0 syncA do {x2’==x2} goto onoff ;
whenx1 - x2<= 0 & -x1 - x2 <= 0 syncA do {x2’==x2} goto offoff ;

loc offoff: while
x2min<= x2 & x2 <= x2max &
x1 -x2<= 0 & -x1 - x2 <= 0 wait { x2’ == -10*x2}
whenx1 - x2>= 0 & -x1 - x2 <= 0 syncA do {x2’==x2} goto onoff ;
whenx1 - x2<= 0 & -x1 - x2 >= 0 syncA do {x2’==x2} goto offon ;

initially : offoff & x2 == 4;

end

The circuit model is described as an affine hybrid system. Thesynchroniza-
tion labels are not really needed. We included them only because they are
preently required by the parser, although they have no effect on this model.

PHAVER provides a set of analysis commands to compute an over-
approximation of the reachable set of states. In the full-wave rectifier case,
we use the following commands:

sys=voltagesource&circuit;
sys.add_label(tau);
sys.set_refine_constraints((x0,au/8),(x1,bu/8),(x2, 1/32),tau);
reg=sys.reachable;
reg2=reg;

4.4. HSolver 109

reg.remove(x0); // project to x1 and x2
reg.print("out_reach",2); // save for plots
reg=reg2;
reg.remove(x2); // project to x0 and x1
reg.print("out_reach_x0x1",2); // save for plots
reg2.print("out_x0x1x2",1); // save for 3D plot

The first line defines a system as the composition of the voltage source and
the circuit automata. The following two lines are used to guide the location
splitting. Theset refine constraints command declares a list of elements of the
form (linear expr,min). A location is split by a hyperplane of the formlinear expr

≤ c wherec is the center of the location. The parametermin is the minimum
extent of a location.

The commandreg.reachable computes the set of reachable states of the
systemreg. It is then possible to project away some variables and generate
the results. The reachable set (wherex0 has been projected away) is shown in
Figure 4.5.

4.3.4 Discussion

PHAVER is a very promising verification tool. It has some unique features:
among others, the ability of computing simulation relations and deciding
equivalence and refinement between hybrid automata. The verification algo-
rithm is very efficient: the full-wave rectifier is verified in1748s on a Pentium
4 processor running at2.8GHz.

PHAVER allows to compose hybrid systems preventing the number dis-
crete states to grow exponentially. The class of models thatcan be described
is the class of affine hybrid systems. Thanks to the rich command language,
the user can guide PHAVER in splitting locations by defining splitting hyper-
planes. This is extremely important in order to tune the verification process
and reach a useful answer in a short time.

4.4 HSolver

HSOLVER is a tool for the safety verification of hybrid systems [149] de-
veloped at the Max-Planck-Institut für Informatik in Saarbrücken, Germany.
HSOLVER uses the general idea of reducing the infinite state space of ahy-
brid system to a finite one by partitioning the continuous space into boxes.

110 Tools for Formal Verification

Fig. 4.5 Reachable set generated by PHAVER.

The basic reachability analysis is hence approximate. If the algorithm returns
a negative answer, then the verification tool should refine the partition to make
sure that indeed the set of “bad” states is not reachable.

HSOLVER approaches this problem by using the information of the con-
tinuous evolution inside the boxes to prune the search spacefrom unreachable
regions. Therefore, the refinement process does not always have to split boxes
but can also rely on the efficient pruning algorithm.

4.4.1 HSOLVER Syntax

The syntax of the HSOLVER input language can be understood on the basis
of the following model [149]. Lets ∈ {s1, ..., sn} be a variable that takes val-
ues from a finite set of of discrete modes, andx1, ..., xk be variables ranging
over closed intervalsI1, ..., Ik, respectively. LetΦ denote the resulting state

4.4. HSolver 111

space{s1, ..., sn} × I1 × ... × Ik. The derivative of a variablexi is denoted
by ẋi and the targets of the jumps are denoted by primed variables.A con-
straint is an arbitrary Boolean combination of equalities and inequalities over
terms that may contain function symbols like+, ×, exp, sin andcos. A state
space constraintis a constraint on the variablesx1, ..., xk. A flow constraint
is a constraint on the variabless, x1, ..., xk, ẋ1, ..., ẋk. A jump constraintis
a constraint over the variabless, x1, ..., xk, s′, x′

1, ..., x
′
k. The description of a

hybrid system consists of a flow constraint, a jump constraint, a state space
constraint describing the set of initial states, and a statespace constraint de-
scribing the set of unsafe states. For instance, consider the full wave rectifier.
The set of discrete states is{onoff, offon, offoff} and there are two con-
tinuous variablesvin andvout. A flow constraints for the entire circuit can be
described as follows:�

s = onoff → v̇out =
vin − vout

RfC
−

vout

RC
∧ vin ≥ vout ∧ −vin ≤ vout

�^�
s = offon → v̇out =

−vin − vout

RfC
−

vout

RC
∧ vin ≤ vout ∧ −vin ≥ vout

�^�
s = offoff → v̇out = −

vout

RC
∧ vin ≤ vout ∧ −vin ≤ vout

�
Notice that in this formulation jumps are forced by not allowing a flow in a
certain region. In our example, we have included the invariants in the defini-
tion of the flow constraint.

Each constraint (flow, jump, initial states and unsafe states) is satis-
fied by a set of values, drawn from the corresponding domain ofthe con-
straint. Thus, the hybrid system can be equivalently described by the tuple
(Flow, Jump, Init, Unsafe) where

Flow ⊆ Φ × R
k

Jump ⊆ Φ × Φ

Init ⊆ Φ

Unsafe ⊆ Φ

The input language of HSOLVER allows the description of hybrid
systems by specifying modes, continuous variables, and thetuple
(Flow, Jump, Init, Unsafe). A hybrid system description has the follow-
ing declarations:

112 Tools for Formal Verification

• a list of the names of the variables spanning the continuous state
space:VARIABLES

[x1,...,xn] ,
• a list of the names of the discrete modes:

MODES

[m1,...,ms] .
• For each mode, the hyper-rectangle spanning the corresponding

continuous state space:
STATESPACE

m1[[l1,u1],..,[ln,un]]

...

ms[[l1,u1],..,[ln,un]]

where[li,ui] denote the lower and upper bound for variablexi.
• For each mode, a constraint describing the set of initial states in

this mode:
INITIAL

m1 { constraint }

...

ms { constraint } .

• For each mode, a constraint describing the continuous evolution
in this mode:
FLOW

m1 { constraint }

...

ms { constraint }

The constraint may contain the variables as specified using the
keyword VARIABLES, and these variables followed byd to repre-
sent the corresponding derivatives.

• For each pair of modes, a constraint describing discontinuous
jumps of trajectories:
JUMP

mi − > mj { jump constraint }

...

mk − > ml { jump constraint }

The constraint may contain the variables as specified using the

4.4. HSolver 113

keyword VARIABLES and their primed versions. The unprimed
versions describe the jump source and the primed versions the
jump target.

• For each mode, a constraint describing the set of unsafe states in
this mode:
UNSAFE

m1 { constraint }

...

ms { constraint } .

4.4.2 HSOLVER Semantics

The semantics of a hybrid system in HSOLVER is defined by the set of ad-
missible trajectories. For a functionr : R≥0 → Φ, let limt′→t− r(t′) = (φ, f)

denote the left limit ofr at t, wheref is the left limit of the real-valued com-
ponent ofr andφ is the discrete state when, for taking the limit, the state
variable is considered as a piecewise constant and left-continuous function.

Definition 6. A continuous time trajectory is a function inR≥0 → Φ. A
trajectory of a hybrid system(Flow, Jump, Init, Unsafe) is a continuous
time trajectoryr such that:

• if the real-valued componentf of r is differentiable at t,
and limt′→t− r(t′) and r(t) have an equal modes, then
((s, f(t)), ḟ(t)) ∈ Flow,

• otherwise(limt′→t− r(t′), r(t)) ∈ Jump.

A trajectory from a statex to a statey is a trajectoryr such thatr(0) = x and
∃t ∈ R≥0 such thatr(t) = y.

The semantics of a hybrid system is the collection of its trajectories. Note
how these definitions represent essentially a simplification of the general de-
finition that was given in Section 2.1, Definition 3. In particular, one could
derive an equivalent hybrid time basis (Definition 2) by partitioning the real
line into intervals over which the mode remains constant.

114 Tools for Formal Verification

4.4.3 HSOLVER Safety Verification

HSOLVER builds an abstraction of a given hybrid system by decomposing the
state space into boxes. Then it uses the observation that a point in a boxB

can be reachable only if it fulfills one of the three followingconditions:

• it is reachable from an initial point inB via a continuous flow;
• it is reachable from a jump toB via a continuous flow;
• it is reachable from the boundary ofB via a continuous flow;

The approach formalizes these three conditions in the first-order predicate
language (i.e., as constraints that do not contain any differentiation symbols),
and then uses the interval constraint propagation-based solver RSOLVER to
remove points from boxes that do not fulfill any of these conditions.1 If this
is not sufficient to verify the safety of the input system, then the abstraction
is refined by splitting boxes into pieces, and further pruning the state space
using the approach above. Due to the fact that the constraintsolver allows
non-linear constraints as input, and that it is completely rigorous (i.e., the
correctness of the results is not affected by rounding errors), HSOLVER in-
herits these properties.

4.4.4 Examples

In this section we show how the full-wave rectifier can be described and ver-
ified. The set of modes of the rectifier is{m1,m2,m3,m4} denoting the
statesonoff , offon, offoff andonon, respectively. The HSOLVER hy-
brid system description of the full-wave rectifier is as follows:

VARIABLES [x0,x1,x2]
MODES [m1,m2,m3]
STATESPACE

m1[[-5,5],[-5,5],[0,4]]
m2[[-5,5],[-5,5],[0,4]]
m3[[-5,5],[-5,5],[0,4]]

INITIAL
m1{x0<=-0.0121/\x0>=-0.0134/\x1=0/\x2=4}

FLOW
m1{x0 d=x1}{x1 d=-98596*x0}{ x2 d=100000*(x1-x2) - 10*x2}
m2{x0 d=x1}{x1 d=-98596*x0}{x2 d=-100000*(x1-x2) - 10*x2}
m3{x0 d=x1}{x1 d=-98596*x0}{x2 d=-10*x2}

1RSOLVER is available athttp://rsolver.sourceforge.net

4.5. Masaccio 115

JUMP
m1− >m2{x1<x2/\-x1>=x2}
m2− >m1{x1>=x2/\-x1<x2}
m1− >m3{x1<x2/\-x1<x2}
m3− >m1{x1>=x2/\-x1<x2}
m2− >m3{x1<x2/\-x1<x2}
m3− >m2{x1<x2/\-x1>=x2}

UNSAFE
m3{x2<3.5}

The input voltage peak amplitudeA ranges between3.8V and4.2V , Rf =

0.1Ω, R = 1KΩ, C = 100µF andf0 = 50Hz. The threshold voltage is set
to vmin = 3.5.

The verification could not terminate. In this example, extremely fast
movement happens near the mode switches in a very small area.HSOLVER

needs a huge number of abstract states to achieve the necessary separation in
this small area. Moreover, HSOLVER cannot exploit the fact that the problem
is linear and deterministic.

4.4.5 Discussion

HSOLVER uses a traditional interval method for the verification of hybrid
systems in an abstraction-refinement framework. When the verification al-
gorithm finds that a system is unsafe, the over-approximation is refined by
reducing the grid size. HSOLVER improves this traditional method by im-
plementing a pruning algorithm that removes uninterestingparts of the state
space before reducing the grid size. Consequently, the refinement of the over-
approximation can be obtained even without increasing the number of grid
locations, one of the causes of exponential blowout in the verification algo-
rithms for hybrid systems.

The language for describing hybrid systems is very easy to understand.
There are no limitations in describing a single automaton and the limited
number of statements in the language makes it simple to use. HSOLVER does
not support hierarchy and composition of hybrid automata.

4.5 Masaccio

As we have already seen in the previous sections, the conceptof hierarchy for
the specification of complex systems is quite consolidated.We now point our
attention to the possible ways of nesting components in hierarchical systems,

116 Tools for Formal Verification

since -as we will see below- MASACCIO offers the greatest flexibility in this
sense.

We already mentioned the concurrent and sequential hierarchies of some
modeling tools like STATECHARTS [87], UML [40] and Ptolemy [59]. Other
languages, like CHARON, also address specifically the issue of hierarchical
modeling for hybrid systems. However, all these modeling formalisms focus
on simulation rather than formal analysis.2 Tools that support compositional
verification are some variants of STATECHARTS, hierarchical modules and
hybrid I/O automata. STATECHARTS has been extended in [168] with variants
that allow compositional verification, but still suffers ofsome major limita-
tions, most notably the absence of support forassume-guarantee reasoning.
Hierarchical modules [6] provide both serial and parallel composition and
support assume-guarantee, but components can be only discrete, thus there is
no way of characterizing continuous-time behavior. On the other hand hybrid
I/O automata [133] can also model continuous-time components but serial
composition is not supported.

MASACCIO is a modeling formalism for compositional verification of hy-
brid systems that goes a step further. Hybrid systems described in MASAC-
CIO result from a hierarchical specification made ofcomponents[96, 100].
MASACCIO supports both discrete and continuous time components thatcan
be arbitrarily nested and composed via both parallel and serial operators.
Moreover, MASACCIO offers support for assume-guarantee reasoning, a com-
pelling example of which is provided in [100].

4.5.1 MASACCIO Syntax

Hybrid systems in MASACCIO are built out ofcomponentsthat are defined in
terms of interfaces (describing the syntactic structure) and executions (defin-
ing the semantics). Theinterfaceof a componentA consists of:

• A finite setV i
A of input variables.

• A finite setV o
A of output variables.

• A dependency relation≺ ⊆ V i
A × V o

A between input/output vari-
ables.

2Actually, as discussed in Section 3.6, some latest results allow some kind of formal analysis also in
CHARON.

4.5. Masaccio 117

• A finite setLA of interface locations. Locations are points through
which the control flow enters/exits the component.

For variables, the following condition must hold:V i
A ∩ V o

A = ∅. The state
of componentA is an assignment of values to the set of variablesVA = V i

A ∪

V o
A. All variables in MASACCIO aretyped, so assignment must be consistent

with variable types. The set of all possible state assignments to the variables
in VA is denoted by[VA].

The meaning of the dependency relation is the following: assumex ≺ y,
then the value ofy depends without delay on the value ofx. Specifically, for
jumps, the value ofy after the discrete transition takes place, depends on the
value ofx also after the jump. For flows, the value of the derivativeẏ depends
instantaneously on the value ofẋ. MASACCIO requires that the dependency
relation be acyclic in order to guarantee the existence of input/output values
(for jumps) or curves (for flows). This condition may seem toorestrictive,
since input/output values or curves can exist also if some cyclic dependency
exists, but has the obvious advantage of avoiding expensivefixed-point cal-
culations. This eliminates some of the potential sources ofnon-determinism
in the behavior of the hybrid systems.

For each locationa ∈ LA, the interface specifies ajump entry condi-
tion Ψjump

A (a) and aflow entry conditionΨflow
A (a). The component can be

entered through a given (jump or flow) location if the corresponding entry
condition is satisfied by the current I/O state. Control can exit the component
at any location. Typically, exit points are locations with unsatisfiable entry
conditions. Therefore, we see that, unlike CHARON, which separates entry
from exit locations, in MASACCIO there is no syntactical distinction between
entry and exit points of the component.

4.5.2 MASACCIO Semantics

The semantics of MASACCIO is specified in terms of behaviors of single com-
ponents. Given a generic componentA its behavior is defined by a setEA of
finite executions. Infinite executions in finite time, i.e., Zeno behaviors, are
not allowed in MASACCIO. Zeno behaviors have been thoroughly addressed
in [95], and conditions are available for hybrid systems that prevent Zeno be-
havior. The user should verify whether one of these conditions apply for the
description that he/she describes in MASACCIO.

118 Tools for Formal Verification

An executionis a tuple of the form:

• (a,w, b)
• (a,w)

wherea ∈ LA is an entry location,b ∈ LA is an exit location andw
is a sequence of execution steps, i.e. either flows or jumps, as described be-
low. The locationa is called theorigin of the execution,b (if present) is the
destination, while w is called thetrace.

A jump is a pair(p, q) ∈ [VA] × [VA] of I/O states; statep is called the
sourceof the jump, whileq is called thesink. A flow is a pair(δ, f), where
δ is a non-negative number andf : R → [VA] is a function differentiable
on the closed interval[0, δ]. The quantityδ is called thedurationof the flow,
while f(0) is the source andf(δ) is the sink. Intuitivelyf(t) describes the
state trajectory for the whole duration of the flow. For consistency, the sink
state of a step must be the same as the source state of the following step in
the sequence.

Atomic components (discrete or continuous) contain only one origin and
destination. Traces can only be single jumps for discrete components or sin-
gle flows for continuous components. For discrete components, the allowed
jumps are defined in terms of ajump predicate, which constrains the values of
I/O states before and after a jump. Usually, such constraints are expressed in
terms of difference equations. For continuous components,the allowed flows
are determined by aflow predicate, usually defined by differential equations
on I/O signals; clearly the causality property must hold: ifu is the vector of
input signals andy is the vector of outputs, thenu ≺ y.

The semantics of MASACCIO is made complete with the interpretation of
jump or flowentry conditions, as explained in the previous section. We recall
that executions can start only if the corresponding entry condition is satisfied,
and they terminate when there is no entry condition which canbe satisfied.

Generic components are defined by nested compositions of atomic com-
ponents. MASACCIO supports two basic composition operators: parallel com-
position and serial composition.

Parallel Composition. Given two componentsA andB their parallel com-
position is denoted byA||B. The corresponding execution starts at a common

4.5. Masaccio 119

location inLA ∩LB , and it is synchronous for both components: every jump
in A takes place at exactly the same time of a corresponding jump in B, and
similarly flows in A are matched by flows inB having the same duration.
MASACCIO supports preemption: when one of the two components reaches
an exit location, the execution of the other component is halted and the control
flow exits fromA || B.

Serial Composition. Serial composition represents sequencing of behav-
iors. GivenA andB, their serial composition is denoted byA+B. Executions
of A + B are either executions ofA or B. The set of control flow locations is
the union of those of the two individual components, i.e.LA+B = LA ∪ LB .
Also the set of variables is the union of the sub-components’variables:
VA+B = VA ∪ VB . The triple (a,w, b) is an execution ofA + B if and
only if either(a,w[A], b) is an execution ofA or (a,w[B], b) is an execution
of B.

In addition to the above operations, in MASACCIO it is possible to re-assign
variables names in order to enable the sharing of information among the dif-
ferent components. Variables having the same names refer tothe same signal.
MASACCIO also supports variable hiding and location hiding to provide the
language with the property ofencapsulation. However, in order to prevent
deadlocks, locations can be hidden only if their corresponding entry condition
is satisfied so that the control flow can never halt at those locations. Hidden
variables have local scope, meaning that their values are re-initialized each
time the control flow enters into the corresponding component.

Assume-Guarantee. MASACCIO supports the technique of assume-
guarantee reasoning. For this, we need to discuss therefinement relationship
and thecompositionality propertiesof the model.

Intuitively, if componentA refines componentB, we can think ofA as
being “more specific” thanB; from the point of view of observational se-
mantics, all the traces ofA are also traces ofB (the converse is in general not
true). From an operational point of view componentA may result fromB by
adding some constraints on it, e.g.A = B || C for some other componentC.
Formally, componentA refines componentB if the following conditions are

120 Tools for Formal Verification

satisfied:

(1) every input (output) variable ofA is an input (output) variable of
B and the dependency relation ofB is a subset of the dependency
relation ofA. In symbols:≺B⊆≺A.

(2) every execution of(a,w, b) ∈ EA is such that(a,w[B], b) ∈ EB ,
that is every execution ofA is an execution ofB provided traces
are restricted to only variables belonging toB.

Compositionality means that the operators are monotonic relative to the
refinement relationship. In other words, ifA refinesB thenA || C refines
B ||C (for a generic componentC), A+C refinesB +C and the application
of the variable renaming and variable/location hiding operators does not alter
the refinement relation between componentsA andB.

Under these and other assumptions on the scope of the variables, MASAC-
CIO supports the assume-guarantee principle. Intuitively, one can separately
verify the correctness of each componentA (i.e., thatA refines its specifica-
tion), assuming that the rest of the components of the systembehave accord-
ing to their specification. Then, the correctness of the components implies
the correctness of the whole system (for details see [100]).By using this
technique, a large verification problem can be decomposed into many smaller
verification problems, which are typically much easier to solve, as the com-
plexity of verification grows more than linearly (often exponentially) in the
size of the system. The approach, however, can only be applied under certain
conditions. We refer the reader to the literature for more details [100].

4.5.3 Discussion

MASACCIO is a formalism that is intended to study the theoretical implica-
tions of certain verification techniques, and therefore does not provide any
practical support for the implementation of the models and for their verifi-
cation. For this reason, we were unable to implement the examples in this
case. The strength of MASACCIO lies in its formal definition of the semantic
domain, which makes it an ideal denotational framework to develop tech-
niques for the analysis of hybrid systems. In particular, the assume-guarantee
and other compositional techniques are required, togetherwith abstraction, to
address the complexity of verification in hybrid systems.

4.6. CheckMate 121

4.6 CheckMate

CHECKMATE is a hybrid system verification toolbox forMATLAB that has
been developed at Carnegie Mellon University. This sectionreviews how
modeling and verification of hybrid systems is performed in this environment
and is based on [153].

CHECKMATE supports simulation and verification of a particular class
of hybrid dynamic systems calledthreshold event-driven hybrid systems
(TEDHS) [95]. A verification procedure for these systems wasproposed
in [50]. In a TEDHS, the changes in the discrete state can occur only when
continuous state variables encounter specified thresholds. Thresholds in the
TEDHS model are hyperplanes. In the language of the general hybrid system
model presented in Section 2.1, guards and invariants are linear function of
states and are complementary, i.e., when invariants are notsatisfied, an appro-
priate guard must be satisfied. This guarantees that when thesystem has to
jump because the invariant is not satisfied at a given state, there is a transition
that it can take and, therefore, the behavior is non blocking.

Hybrid system models in CHECKMATE have continuous dynamics de-
scribed by standard differential state equations (possibly nonlinear), planar
switching surfaces, and discrete dynamics modeled by finitestate machines.
The key theoretical concepts used in CHECKMATE are described in [49].

4.6.1 CHECKMATE Syntax

A very interesting feature of CHECKMATE is the use of standard industrial
tools to enter the description of hybrid systems. CHECKMATE models are
constructed using custom and standard SIMULINK and STATEFLOW blocks.
The continuous state equations, parameters and specifications (the properties
to be verified) are entered using the SIMULINK GUI and user-defined MAT-
LAB m-files. Specifications express properties of trajectories of the CHECK-
MATE model. The CHECKMATE verification function determines if the given
specifications are true for all trajectories starting from apolyhedral set of ini-
tial continuous states. Note that the semantics of the design must be the one
understood by CHECKMATE. For this reason, the tool uses thesyntaxof the
SIMULINK environment but restricts its semantics so that a formal approach
can be used.

122 Tools for Formal Verification

CHECKMATE models are built with the SIMULINK GUI using two cus-
tomized SIMULINK blocks along with several of SIMULINK standard blocks.
To build the model from scratch, the user must enter the command cmnew

at the MATLAB command prompt. This will open the CHECKMATE library
from which the user can construct the system model. Currently, the set of
blocks used in CHECKMATE are:

(1) Switched Continuous System Block (SCSB).The custom SCSB
represents a continuous dynamic system with state equationẋ =

f(x, σ), whereσ is a discrete-valued input vector to the SCSB and
the continuous state vectorx is the block’s output. Currently, three
types of dynamics can be specified in an SCSB for each value of
the input vectorσ: clock dynamicsẋ = c, wherec is a constant
vector, linear dynamicṡx = Ax + b, whereA is a constant ma-
trix andb is a constant vector, and nonlinear dynamicsẋ = f(x).
The switching function is am-file that provides the information
about the dynamics of the system. The variableσ selects which
dynamics should be used.

(2) Polyhedral Threshold Block (PTHB).The other custom block in
CHECKMATE is the PTHB, which represents a polyhedral region
Cx ≤ d in the continuous space of the continuous-valued input
vectorx. The PTHB output is a binary signal indicating whetherx

is inside the region or not, i.e. whether or not the conditionCx ≤ d

is true. The initial condition, the analysis region, and theinternal
region hyperplane are defined aslinearcon object.

(3) Finite State Machine Block (FSMB).Discrete dynamics are mod-
eled using a FSMB. FSMBs are regular STATEFLOW blocks that
conform to the following restrictions:

• no hierarchy is allowed in the STATEFLOW diagram;

• data inputs must be Boolean functions of PTHB and
FSMB outputs only;

• event inputs must be Boolean functions of PTHB outputs
only, i.e. events can only be generated by the continuous
trajectory leaving or entering the polyhedral regions;

• only one data output is allowed;

4.6. CheckMate 123

• every state in the STATEFLOW diagram is required to have
an entry action that sets the data output to a unique value
for that state;

• no action other than the entry action discussed above is
allowed in the STATEFLOW diagram.

Some of these restrictions are rather severe from an ease-of-use
point of view. For example, hierarchy is a much used feature of
STATEFLOW. Barring its use may force the designer to enter an
unwieldy number of states. Event inputs are in general used to rep-
resent disturbances as well as control. Restricting eventsto repre-
sent jumps due to the evolution of the continuous state may again
create inconveniences to the user. The other restrictions are made
to guarantee deterministic execution of the hybrid automaton.

There are some parameters the user must enter in order to giveCHECK-
MATE all the necessary details about the verification process. These parame-
ters, as well as any variables used in the SIMULINK /STATEFLOW front-end
model, are defined and stored in the MATLAB workspace. Parameters and
variables can be defined manually or through the use of MATLAB m-files.

4.6.2 CHECKMATE Semantics

A threshold-event-driven hybrid system is a combination ofa switched con-
tinuous system (SCS), a threshold event generator (TEG), and afinite state
machine (FSM). The SCS takes the discrete-valued inputσ and produces its
continuous state vectorx as the output. The continuous dynamics forx evolve
according to the differential equations or differential inclusions selected by
the discrete inputσ. The output of the SCS is fed into the TEG, which pro-
duces an event when a component of the vectorx crosses a corresponding
threshold from the specified direction (rising, falling, orboth). The event sig-
nals from the TEG drive the discrete transitions in the FSM whose output, in
turn, drives the continuous dynamics of the SCS.

CHECKMATE converts the TEDHS into apolyhedral invariant hybrid au-
tomaton (PIHA). PIHA are a subclass of hybrid automata as presented in [95].
Recalling the definitions in Section 2.1, each discrete state in the hybrid au-
tomaton is called a location. Associated with each locationis an invariant, the

124 Tools for Formal Verification

condition which the continuous state must satisfy while thehybrid automaton
resides in that location, and the flow equation representingthe continuous dy-
namics in that location. Transitions between locations arecalled edges. Each
edge is labeled with guard and reset conditions on the continuous state. The
edge is enabled when the guard condition is satisfied. Upon the location tran-
sition, the values of the continuous state before and after the transition must
satisfy the reset condition. In general, the analysis of hybrid automata can be
very difficult. In CHECKMATE, the attention is restricted to PIHA. A PIHA
is a hybrid automaton with the following restrictions:

• the continuous dynamics for each location is governed by an ordi-
nary differential equation (ODE);

• each guard condition is a linear inequality (a hyperplane guard);
• each reset condition is an identity;
• for the hybrid automaton to remain in any location, all guardcon-

ditions must be false. This restriction implies that the invariant
condition for any location is the convex polyhedron defined by the
conjunction of the complements of the guards. This is the origin
of the name polyhedral-invariant hybrid automaton.

These restrictions are needed to simplify the formal verification task and
to allow the simulation of the hybrid system in SIMULINK /STATEFLOW, but
they certainly reduce the application range.

Formal Verification. In CHECKMATE, formal verification is performed by
computing the set of states that are reachable given the initial conditions. De-
riving the set of reachable states is computationally very hard even for linear
time-invariant continuous-time systems. Hence there is a strong incentive for
approximating the problem in a way that makes it computationally feasible. In
CHECKMATE, formal verification is performed using finite-state approxima-
tions known in the literature asquotient transition systems[125]. A quotient
transition system (QTS) is a finite state transition system that is a conserva-
tive approximation of the hybrid system. The states of a QTS correspond to
the elements of a partition of the state space of the hybrid system. There is
a transition between two statesP1 andP2 of the QTS if and only if there is
a transition between two statesp1 ∈ P1 andp2 ∈ P2 in the original hybrid

4.6. CheckMate 125

system. Thus, for every trajectory in the original hybrid system there is a cor-
responding trajectory in the QTS. However, the converse is not true, i.e., there
may be trajectories in the QTS that do not correspond to any trajectory in the
original hybrid system. The approximation is conservativein the sense that
it captures all possible behaviors of the hybrid system, andpossibly more.
Therefore, if all trajectories in the QTS satisfy some property, then we can
conclude that all trajectories in the hybrid system also satisfy the same prop-
erty. If a negative result is found (the property is not verified), the verification
of the original hybrid system is inconclusive and the user isgiven the option
to refine the current approximation and attempt the verification again.

CHECKMATE only pays attention to the behavior of the hybrid system at
the switching instants. Thus, CHECKMATE approximates the QTS for the hy-
brid system from the partition of the switching surfaces, which are the bound-
aries of the location invariants in the PIHA, and the set of initial continuous
states.

The verification method in the QTS is based on reachability analysis and,
therefore, requires a very expensive computation for continuous-time dynam-
ical systems. To reduce the computational complexity, reachability analysis
is not performed on the original system, but using an approximation method
calledflow-pipe approximation[50]. The flow-pipe approximation is used to
define transitions in the quotient transition system for thePIHA as follows.
A state in the quotient transition system is a triple(π, p, q) whereπ is a poly-
tope in location(p, q) of the PIHA. For each state in the quotient transition
system, the flow pipe is computed for the associated polytopeunder the as-
sociated continuous dynamics. The mapping set, i.e. the setof states on the
invariant boundary that can be reached fromπ, is computed. A transition is
then defined from(π, p, q) to any other state whose polytope overlaps with
the mapping fromπ. CHECKMATE then performs model checking on this
transition system to obtain a verification result for the desired specification.
If the verification returns a positive result, then the program informs the user
and terminates. If a negative result is returned, then the user is given the op-
tion of quitting or allowing CHECKMATE to refine the approximation and
repeating the verification. This process continues until a positive verification
result is obtained, or the user decides to quit.

126 Tools for Formal Verification

(a) (b)

Fig. 4.6 Checkmate model of the three-mass system

4.6.3 Examples

The three-mass system has no inputs and is characterized by twelve state
variables: vertical positions, vertical velocities, horizontal positions and hor-
izontal velocities. The block diagram for the three-mass system is shown in
Figure 4.6. The switched continuous system, the PTHB blocksand the fi-
nite state machine are provided as a CHECKMATE block-set in SIMULINK . A
PTHB block has aPolyhedron parameter that must be set to a variable defined
in the MATLAB workspace. Such a variable is defined by calling the function
linearcon(CE,dE,CI,dI) provided with the CHECKMATE package. Thelinearcon

function generates a data structure that represents the setof linear constraints
CE = dE andCI ≤ dI. The output of a PTHB block is equal to zero when
such constraints are violated and equal to one when they are satisfied.

Figure 4.6-b shows the state machines that represents the discrete part of
the model. Arcs are labeled by events that are generated on the raising edge of
the output of PHTB blocks. Each state is encoded with an integer. When the
discrete automaton enters a state, it outputs the integer that corresponds to that
state. The state number is used by the SCSB that is linked to a MATLAB func-
tion. Depending on the state, the MATLAB function selects a corresponding
dynamical system and a set of reset maps.

The simulation results are shown in Figure 4.7. The criticalcase when
x3,0 = L cannot be correctly simulated by CHECKMATE. The figure also

4.6. CheckMate 127

Fig. 4.7 CHECKMATE simulation results of the three-mass system.

show the sequence of events that happen during the simulation. Eventm2f ,
which indicates thatm2 starts falling, becomes enabled before eventm3f

which indicates thatm3 starts falling. The reason is that in order forvx3 to be
greater than zero, one integration step is required which delays the enabling
of m3f . This kind of situation makes simulation inadequate for theanaly-
sis of hybrid systems and this is why model checkers like CHECKMATE are
essential tools for researchers in the hybrid system community.

The Full Wave Rectifier Example. Figure 4.8 shows a model of the full-
wave rectifier in CHECKMATE. The structure is obviously identical to the
three-mass system. CHECKMATE does not allow a dynamical system to have
an external input (only the discrete input from the state machine is allowed).
The sinusoidal voltage source has to be internally generated by the SCSB.
If we want to keep the system linear we can use a second order equation
d2vin/dt = −ω0vin to generate the input voltage. Simulation results are
shown in Figure 4.9. Algebraic loops are avoided by construction in CHECK-
MATE. In fact, only systems of the forṁx = f(x, u) can be described.

128 Tools for Formal Verification

(a) (b)

Fig. 4.8 Checkmate model of the full-wave rectifier.

Fig. 4.9 CHECKMATE simulation results of the full wave rectifier.

4.6.4 Discussion

CHECKMATE has several interesting aspects. First of all, it uses a verypopu-
lar tool suite to capture the design specifications and to simulate the system.

4.7. Ellipsoidal Calculus for Reachability 129

Second, it uses a particular restriction of the general hybrid system model
presented in Section 2.1 that allows carrying out formal verification. Third,
it uses conservative approximations to reduce the computation costs of for-
mal verification for hybrid systems. From a practical viewpoint, the approxi-
mation scheme yields computational problems that remain prohibitive when
the number of variables is more than five (due to the high cost of reach-
ability analysis). A CHECKMATE model implements a hybrid system as a
differential equationẋ = f(x, u) with one discrete inputu coming from
a Moore-type state machine (implemented by a STATEFLOW chart). With
CHECKMATE it is possible to specify dynamics that are more complex than
the ones allowed by HYTECH. On the other hand, HYTECH provides a set of
language features for the composition of hybrid automata, an operation which
is not possible in CHECKMATE.

It was not possible to verify our models using CHECKMATE due to execu-
tion errors. We think that the errors arise from an incompatibility between the
current version of MATLAB and the version upon which CHECKMATE was
originally developed. Unfortunately CHECKMATE is no longer supported
and, therefore, it hasn’t been possible to ask for an updatedversion.

4.7 Ellipsoidal Calculus for Reachability

In recent years various researchers in the control community have inves-
tigated ellipsoids as a tool to compute approximations of continuous sets.
S. Veres has developed the GEOMETRIC BOUNDING TOOLBOX - currently
available in the release GBT 7.3 [172] - as a MATLAB toolbox that supports
numerical computations with polytopes and ellipsoids in the n-dimensional
Euclidean space forn ≥ 1. The toolbox includes procedures for convex hull
determination (both vertex enumeration and facet enumeration), polytope ad-
dition and difference in the Minkowski sense3, intersections, hyper-volumes,
surface-areas, orthogonal projections. affine transformations. The operations
available for ellipsoids include: smallest volume ellipsoid covering a poly-
tope, interior and exterior approximations to the, difference and intersection
of ellipsoids.

3Given the convex and compact setsX andY in Rn, the Minkowski sum is the setX+Y = ∪x∈X∪y∈Y

{x + y}, wherex + y is the vector sum of pointsx andy; similarly, the Minkowski difference is the set
X − Y = ∩y∈Y ∪x∈X {x − y}, wherex − y is the vector sum of pointsx and−y.

130 Tools for Formal Verification

The most systematic contributions to ellipsoidal calculusfor representing
reached sets are due to the research group of A.B. Kurzhanskiy, active both
in Moscow and at UC Berkeley (with P. Varaiya). In a long sequence of pa-
pers [114, 116, 115, 119, 117, 118, 120], A.B. Kurzhanskiy and P. Varaiya
developed techniques for approximating the reached sets ofdynamical sys-
tems. They addressed the general problem: given the differential equation
ẋ(t) = f(x(t), u(t), v(t)), x(0) ∈ X0, wherex(t) ∈ Rn is the state,
u(t) ∈ U is the control,v(t) ∈ V is the disturbance, andX0 is the set of
initial states, calculate (an approximation of) the set of statesX(t,X0) that
can be reached at timet, by choosing an appropriate control, whatever is the
disturbance. In particular they studied how to approximatethe reached sets
externally and internally by ellipsoids and developed an ellipsoidal calculus.

A collection of MATLAB procedures to support the ellipsoidal calculus
has been made available recently by A.A. Kurzhanski as the ELLIPSOIDAL

TOOLBOX [123]. It implements the core procedures of ellipsoidal calcu-
lus and its application to the reachability analysis of continuous-time and
discrete-time linear systems, and linear systems with disturbances. The main
advantages of ellipsoidal representations are:

• their complexity grows quadratically with the dimension ofthe
state space and remains constant with the number of time steps;

• it is possible to converge exactly to the reached set of a linear
system through external and internal ellipsoids.

•

A couple of recent papers [122, 121] extended the analysis tohybrid sys-
tems under piecewise open-loop controls restricted by hardbounds, where
the system equations may be reset when crossing some guards in the state
space, and so there is an interplay between continuous dynamics governing
the motion between the guards and discrete transitions determining the resets.
They address the verification problem of intersecting or avoiding a target set
at a given time or at some time within a given time interval, and propose
computational strategies based on the ellipsoidal calculus.

Ellipsoidal calculus was applied in VERISHIFT, a package for safety
verification of systems modeled by hybrid automata, developed by O.
Botchkarev and S. Tripakis [41]. The authors worked out a reachability pro-
cedure for systems of hybrid automata with linear dynamics,expressed as

4.7. Ellipsoidal Calculus for Reachability 131

differential inclusions of the forṁx ∈ Ax + U ; reachability analysis is per-
formed for a bounded time∆ supplied as a parameter by the user. The al-
gorithm over-approximates: (1) intersections, unions, linear transformations
and geometric sums of convex sets; (2) the reachable set of a linear differ-
ential inclusion over time. It deploys new methods for over-approximating
the unions of ellipsoids and intersections of ellipsoids and polyhedra. VER-
ISHIFT accepts systems of hybrid automata communicating by input/outpur
variables and synchronous message passing and supports dynamic creation
and reconfiguration of automata.

An improved version of Botchkarev’s algorithm has been presented
in [46], by avoiding in the reachability computation the approximations
caused by the union operation in the discretized flow tube estimation. There-
fore, the new algorithm may classify correctly as unreachable states that are
reachable according to the original version of Botchkarev’s algorithm, due
to the loose over-approximations introduced by the union operation. The re-
vised reachability algorithm was implemented inside VERISHIFT and tested
successfully on a real-life case study modeling a hybrid model of a controlled
car engine. Some new theoretical results on termination of restricted classes
of automata were also provided.4

An open research problem is how to integrate representations based on
ellipsoids with those based on polyhedra to achieve the tighter approximation
of a given set. A step in this direction has been recently taken with the ARI-
ADNE project [29]. ARIADNE provides an environment in which algorithms
for computing with hybrid automata can be developed based onrepresenta-
tions of sets as unions of ellipsoids as well as unions of cuboids, zonotopes,
simplices and polyhedra. ARIADNEdiffers from other tools in that it uses a
rigorous theory of computable analysis [173, 54] to specifya sound semantics
for representations and computations involving points, sets, maps and vector
fields. Using this semantics, optimal provably correct error bounds can be ob-
tained. Currently the geometry module, providing various representations of
sets, has been completed, and work is in progress on the evaluation module,
providing algorithms for evaluating functions on sets and integrating vector
fields. Interfaces to these kernel modules are available through PYTHON and

4The modified version of VERISHIFT and the used test cases are available at
http://fsv.dimi.uniud.it/papers/improving EC2004.

132 Tools for Formal Verification

MATLAB , allowing scripts for safety verification by reachability analysis to
be written. The ARIADNE package will soon be released as an open source
distribution, so that different research groups may contribute new data struc-
tures, algorithms and heuristics.

4.8 d/dt

d/dt is a tool for the reachability analysis of continuous and hybrid systems
with linear differential inclusions developed at Verimag [23, 24, 56]. Design-
ers can used/dt to solve the following problems:

• reachability: given an initial setF of states, compute an over ap-
proximation of the set of all the states reachable by the system
from F .

• safety verification: given a setQ of bad states, check whether the
system can reachQ.

• safety switching controller synthesis: given a safety property
specified as a setS of safe states, synthesize a switching controller
so that the controlled system always remains inside the safesetS
by computing an under approximation of themaximal invariant
set.

The algorithms implemented ind/dt are discussed in detail in [21, 22, 56].

4.8.1 d/dt Syntax

The input tod/dt is a hybrid automaton where:

• continuous dynamics arelinear with uncertain, bounded inputde-
fined by a differential equation of the formf(x) = Ax + Bu,
whereu is an input taking values in a bounded convex polyhedron
U .

• all the invariants and transition guards are defined by convex poly-
hedra which are specified as conjunctions of linear inequalities.

• theresetsassociated with discrete transitions areaffine, set-valued
mapsof the formR(x) = Dx + J whereD is a matrix andJ is a
convex polyhedron.

4.8. d/dt 133

Besides the hybrid automaton, the users ofd/dt provide as input a safety
specification and, optionally, some approximation parameters such as the
time step or the granularity of the orthogonal approximations. Then,d/dt can
process the input data in one of the three different modes mentioned above:
reachability, safety verification, and controller synthesis. The safety specifica-
tion is typically expressed as the setQ of bad states that should not be reached
by the system under any possible evolution. The safety verification algorithm
relies on forward reachability analysis to compute the over-approximationC
of the reachable set. After checking whetherC intersects withQ, d/dt outputs
either the confirmation that the system is safe or a set of bad states that the
system has reached.

4.8.2 d/dt Semantics

Under the continuous dynamics of the formf(x) = Ax + Bu, the time suc-
cessors of a reachable set usually formcurved objectsthat in general cannot
be computed exactly [24, 125].d/dt relies on a conservative approximation
based on polyhedral approximation and an extension of numerical integration
from point-to-polyhedral sets:

(1) given a time stepr and an initial polyhedronF , the tool com-
putes another polyhedronC that approximates the setFr of states
reachable fromF during the time interval[kr, (k + 1)r];

(2) reachable sets are represented by non-convex orthogonal polyhe-
dra [42] because the accumulation of reachable states typically
forms a highly non-convex set.

Although the same research group has presented a method for comput-
ing these approximations for an arbitrary differential function f(x) in [57],
d/dt only handles linear continuous dynamics. For systems with continu-
ous dynamics of the formf(x) = Ax, i.e. without input disturbances,
the set of reachable statesFr is approximated by the convex hullC =

conv(F ∪ Fr), which is first enlarged by an appropriate amount to en-
sure over-approximation and then approximated by a non-convex orthog-
onal polyhedron [24]. For systems with continuous dynamicsof the form
f(x) = Ax+Bu, i.e. with uncertain bounded input disturbances,Fr is com-
puted by simulating the evolution of the faces ofF . This is done by relying

134 Tools for Formal Verification

on themaximum principlefrom optimal control to find the inputs that cover
all possible reachable states [22, 171].

Switching Controller Synthesis Algorithm. d/dt can also be used to syn-
thesize a controller that switches the system between continuous modes to
avoid some states that belong to a setQ of bad states specified as an input
by the users. The synthesis process is based on the derivation of themaxi-
mal invariant set, i.e. the set of states from which the controller by switching
properly can avoid to enter into any element ofQ. In fact,d/dt relies on the
computation of an under-approximation of the maximal invariant set which
is obtained through the application of the reachability techniques for hybrid
automata and the use of theone-step predecessoroperatorπ: given a setF
of safe states, the set of statesπF is derived by iteratively removing fromF
all those states that will leaveF after no more than one switching, until con-
vergence [21, 22, 56]. Then, from the maximal invariant set,d/dt derives the
switching control laws that restrict the invariants and transition guards of the
original hybrid automaton so that the resulting automaton meets the desired
safety specification.

4.8.3 Example

The full-wave rectifier example is modeled as a dynamical system with three
states:

dimension: 3;
constants:
R = 1000,
C = 0.0001,
Rf = 0.1,
w0 = 314.16,
epsilon = 0.01;
initloc : 2;
initset:
type rectangle

-0.01272 -0.01274,
-0.00001 0.00001,
3.99999 4.00001;

badset:
loc id: 2 /* offoff */
type convexconstr

0.0 0.0 1.0 3.5;

4.8. d/dt 135

location : 0; /*onoff*/
matrixA :

0.0 1.0 0.0,
[-w0*w0] 0.0 0.0,
0.0 [1.0 / (Rf * C)] [- (1.0 / (R * C) + 1.0 / (Rf * C))];

scalB: 0.0;
inputset: ;
stayset:

type convexconstr
0.0 -1.0 1.0 0.0, /* vin - vl>= 0*/
0.0 -1.0 -1.0 0.0; /* -vin - vl<= 0*/

transition :
label nfff: /* onoff − > offoff */

if in guard :
type convexconstr

0.0 1.0 -1.0 [epsilon]; /* vin - vl<= 0*/
goto 2;

label nffn: /* onoff − > offon*/
if in guard :

type convexconstr
0.0 1.0 -1.0 [epsilon], /* vin - vl<= 0*/
0.0 1.0 1.0 [epsilon]; /*-vin - vl>= 0*/

goto 1;
location: 1; /*offon*/

matrixA :
0.0 1.0 0,
[-w0*w0] 0.0 0.0,
0.0 [- 1.0 / (Rf * C)] [- (1.0 / (R * C) + 1.0 / (Rf * C))];

scalB: 0.0;
inputset: ;
stayset:

type convexconstr
0.0 1.0 -1.0 0.0, /*vin - vl<= 0*/
0.0 1.0 1.0 0.0; /*-vin - vl>= 0 */

transition :
label fnff: /*offon − > offoff*/

if in guard :
type convexconstr

0.0 1.0 -1.0 0.0, /*vin - vl<= 0*/
0.0 -1.0 -1.0 0.0;/*-vin - vl<= 0*/

goto 2;
label fnnf: /*offon − > onoff*/

if in guard :
type convexconstr

0.0 -1.0 1.0 0.0, /*vin -vl>= 0*/
0.0 -1.0 -1.0 0.0; /*-vin -vl<= 0*/

136 Tools for Formal Verification

goto 0;
location: 2; /*offoff*/

matrixA :
0.0 1.0 0,
[-w0*w0] 0.0 0.0,
0.0 0.0 [-1.0/(R*C)];

scalB: 0.0;
inputset: ;
stayset:

type convexconstr
0.0 1.0 -1.0 0.0, /*vin - vl<= 0*/
0.0 -1.0 -1.0 0.0; /*-vin - vl<= 0*/

transition :
label fffn: /*offoff − > offon*/

if in guard :
type convexconstr

0.0 1.0 1.0 0.0; /*-vin -vl>= 0*/
goto 1;

label ffnf: /*offoff to onoff*/
if in guard :

type convexconstr
0.0 -1.0 1.0 0.0; /*vin - vl>= 0*/

goto 0;
;
limits :

x[0] <= 10.0 and
x[0] >= -10.0 and
x[1] <= 10.0 and
x[1] >= -10.0 and
x[2] <= 10.0 and
x[2] >= -10.0

We wish to verify that the output voltage does not drop below3.5V . This
condition is described by thebadset, which lists a set of regions that are con-
sidered unsafe. In our case, the region is characterized by location2 where
both diodes are off and the output voltage is less than3.5V . The rest of the
code describes the hybrid automaton with three states. In each location the
invariant is declared as a set of convex constraints on the state variables while
the dynamics is specified asẋ = Ax+Bu whereu is an external disturbance.
Each location includes a list of its output transitions whose guards conditions
are specified as convex regions. A parameter file is associated to the hybrid
system model in order to tune the verification algorithm to the specific model
and improve the verification efficiency.

4.9. Hysdel 137

Unfortunately,d/dt has problems in computing the over-approximation
because of the marginally stable set of equations. As in the case of PHAVER,
we could use the same method and confine the input voltage to anoctagon
by adding states. Sinced/dt does not support composition, we would have
to write explicitly the cross product of the input voltage source described
in PHAVER and the circuit automaton. The composition would then have
twelve states.

4.8.4 Discussion

The features ofd/dt are certainly very interesting. In particular, the capability
of using the results of formal verification to synthesize a controller is quite
appealing in embedded system design. Its limitations are similar to those of
other formal verification tools: limited expressiveness, complex ways of spec-
ifying dynamics and properties, and high computational costs.

4.9 Hysdel

HYSDEL is a hybrid systems description language publicly distributed by the
Automatic Control Laboratory of the Swiss Federal Institute of Technology
Zurich [165, 166]. HYSDEL can be used to describediscrete hybrid automata
(DHA). DHA result from the connection of a finite state machine, which pro-
vides the discrete part of the hybrid system, with a switchedaffine system
(SAS), which provides the continuous part of the hybrid dynamics. DHAs are
formulated in discrete-time and, therefore, Zeno behaviors cannot appear. The
Multi-Parametric Toolbox that is based on HYSDEL allows users to describe
the hybrid dynamics in a textual form, perform reachabilityanalysis and, ul-
timately, synthesize an optimalpiecewise affine (PWA) controller[157].

The HYSDEL compiler is available athttp://control.ee.ethz.ch/ hy-

brid/hysdel. Additional related software in MATLAB is available at
http://www.dii.unisi.it/hybrid/tools.html

4.9.1 HYSDEL Syntax

A HYSDEL netlist has the following structure:

SYSTEM <name> {

/* C-style comments */

138 Tools for Formal Verification

INTERFACE {

}

IMPLEMENTATION {

}

}

The interface section describes the following properties of a system:

• STATE, INPUT, OUTPUT: these denote the state variables, inputs
and outputs subsections, respectively. State, input and output vari-
ables are declared by the type specifier (REAL for real-valued vari-
ables, orBOOL for Boolean-valued variables) that is followed by
the variable name.5 For real variables an optional interval can be
specified by using the suffix[min,max] to denote the minimum and
maximum value that the variable can assume, respectively.

• PARAMETER: In the parameter subsection, a parameter can be
specified in one of the following ways:

– BOOL name=value; where value is eitherTRUE or FALSE.

– REAL name=value; where value is a real number.

– REAL name; where the parameter is treated symbolically.

In the IMPLEMENTATION section, the user describes the behavior of the
hybrid system using mainly the following subsections:

• CONTINUOUS : it contains the description of the dynamics of an
affine discrete time dynamical system through equations of type
var = affine-expression wherevar is a discrete time variable.

• AD : it is used to define Boolean variables from continuous ones
using statements of typevar = affine-expression <= real-number or
var = affine-expression >= real-number. This section can be seen as
an analog to a digital converter.

• DA : it is used to generate continuous variables from Boolean ones
using the following statements:var = IF boolean-expr THEN affine-

expr ; or var = IF boolean-expr THEN affine-expr ELSE affine-expr.
A variable is assigned to an affine expression depending on the

5In the sequel we shall indicate Boolean signals with ab subscript and real signals with anr subscript.

4.9. Hysdel 139

value of the Boolean expression. Sampling could be one example
of DA section where the Boolean expression is a clock signal.

• AUTOMATA : it specifies the state transition equations of the dis-
crete automata of the hybrid system through Boolean expressions
of the formvar = boolean-expression. A Boolean expression can use
logic operators like& (AND), | (OR) and∼ (NOT).

• OUTPUT : it defines the output functions of the hybrid system
through static linear and logic relations.

• LOGIC : it is used to define internal Boolean variables.
• LINEAR : it is used to define real valued variables and algebraic

expressions over them.
• MUST: it describes constraints on continuous and Boolean vari-

ables through expressions of the form:boolean-expression,
affine-expression >= affine-expression, or
affine-expression <= affine-expression

4.9.2 HYSDEL Semantics

HYSDEL systems semantics is defined in terms of discrete hybrid automata
(DHA) (see Figure 4.10). The SAS block contains a set of discrete affine
systems characterized by the following set of equations:

x′
r(k) = Ai(k)xr(k) + Bi(k)ur(k) + fi(k) (4.1)

yr(k) = Ci(k)xr(k) + Di(k)ur(k) + gi(k) (4.2)

wherex′
r(k) = xr(k+1), xr ⊆ R

nr is the continuous state vector,ur ⊆ R
mr

is the external input,yr ⊆ R
pr is the continuous output vector and, fi-

nally, {Ai(k), Bi(k), Ci(k),Di(k)}i∈I are matrices of appropriate dimension.
Depending on the value ofk, indexi(k) selects a different set of matrices, and
hence a different affine system. This means thati(k) represents a mode of op-
eration characterized by different discrete dynamics. Themode is computed
by a logic function of the Boolean state and input variables,as described be-
low. The finite state machine, in turn, represents the hybridautomata whose
state transitions depend on the external Boolean inputub, the previous state

140 Tools for Formal Verification

Fig. 4.10 Block diagram of a discrete hybrid automata.

and the Boolean variableδe(k),

x′
b(k) = fB(xb(k), ub(k), δe(k)) (4.3)

y′b(k) = gB(xb(k), ub(k), δe(k)) (4.4)

δe(k) is true when some particular conditions on the continuous variables are
satisfied. In particular:

δe(k) = fH(xr(k), ur(k), k)

δe(k) is a vector of boolean variables and we use the superscripti to denote
the i-th component of the vector. In particular, time eventsare modeled as
δi
e(k) = 1 ⇐⇒ kTs ≥ t0 (whereTs is the sampling time), and threshold

events are modeled asδi
e(k) = 1 ⇐⇒ aT xr(k) + bT ur(k) ≤ c.

The mode selector is a logic functioni(k) = fM (xb(k), ub(k), δe(k)). In
this setting, reset maps can be considered as special dynamics acting for a
one sampling step. During this step, variables are set to a specific value.

A HYSDEL program has a natural interpretation as a DHA. TheCONTIN-

UOUS sections are used to describe affine systems in the SAS block.The

4.9. Hysdel 141

AD sections are used to generateδe(k) while the DA sections are used to
switch among several affine systems depending on the value ofsome Boolean
variables. Finally, theAUTOMATA section is used to describe the finite state
machine. The use ofLINEAR sections could lead to the presence of alge-
braic loops. Algebraic loops are statically detected and reported by the HYS-
DEL compiler. Notice that the discrete nature of a HYSDEL program makes it
impossible to describe Zeno automata.

4.9.3 Examples

HYSDEL only models discrete time dynamics with fixed sampling time.
Hence, testing event detection and exploiting Zeno executions is not possi-
ble, and we therefore do not present the example of the three-mass system.

We model the full-wave rectifier and synthesize a controllerthat selects a
value of the capacitance to limit the output ripple.

SYSTEM RectifierRC{
INTERFACE {

STATE {

REAL vc[−10.0, 10.0];
BOOL onon, onoff, offon, offoff;}

INPUT {

REAL vin[−10.0, 10.0]; }
PARAMETER {

REAL T = 0.000001;
REAL Rf =0.1;
REAL R = 1000;
REAL C = 0.0001;}

} /* end interface */
IMPLEMENTATION {

AUX {

BOOL d1on,d2on;
REAL i1,i2; }

CONTINUOUS {

vc = vc − vc ∗ T/(R ∗ C) + (i1 + i2) ∗ T/C;
}

AUTOMATA {

142 Tools for Formal Verification

onon = (onon & d1on & d2on)| (onoff & d1on & d2on)| (offon &
d1on & d2on)| (offoff & d1on & d2on);
onoff = (onoff & d1on &∼d2on)| (onon & d1on &∼d2on)| (offoff
& d1on & ∼d2on);
offon = (offon &∼d1on & d2on)| (onon &∼d1on & d2on)| (offoff
& ∼d1on & d2on);
offoff = (offoff & ∼d1on &∼d2on)| (onoff & ∼d1on &∼d2on)|
(offon & ∼d1on &∼d2on)| (onon &∼d1on &∼d2on);

}

AD{

d1on = vin − vc >= 0.0;
d2on = −vin − vc >= 0.0;

}

DA{

i1 = { IF (onon| onoff) THEN (vin-vc)/Rf ELSE 0.0};
i2 = { IF (onon| offon) THEN (-vin-vc)/Rf ELSE 0.0};

}

} /* end implementation */
}

The HYSDEL model has several states:vc is a continuous state representing
the output voltage whileonon, onoff, offon, offoff are discrete states representing
a one-hot encoding of the four states in Figure 2.4. There is one inputvin that
represents the external voltage source. TheCONTINUOUS section implements
the time discretized version of the differential equationv̇c = −vc/(RC) +

(i1 + i2)/C, whereii is the current flowing through diodedi. Such current
depends on the voltage difference across the diode.

TheAUTOMATA section implements the logic of the state machine in Fig-
ure 2.4 and uses two auxiliary boolean variables indicatingthe region of op-
eration of each diodes. Those variables are defined in theAD section. A diode
is on when the voltage across its pins is positive which translates into a linear
inequality in the variables of the model. TheDA section computes the two
currentsi1 andi2 depending on the current state of the automaton.

After a model is described using the HYSDEL language it can be com-
piled with the HYSDEL compiler in order to generate an input file for a MAT-
LAB simulation (it is also possible to generate a mixed logical dynamical de-

4.9. Hysdel 143

0 0.02 0.04 0.06 0.08 0.1
−4

−3

−2

−1

0

1

2

3

4

t[sec]

vi
n/

vc
[V

]

vin
vc

Fig. 4.11 HYSDEL simulation result of the rectifier example

scription of the same system). The MATLAB simulation file has the following
interface:

function [xn, d, z, y] = circuit(x, u, params)

It simulates one step starting from the initial conditionsx, with input u

and parametersparams. It returns the new statexn, the outputy, and
some auxiliary variables used in the internal representation of a DHA. The
HYSDEL toolkit provides also a wrapper function with the followinginter-
face:

function [XX,DD,ZZ,YY] = hybsim(x0,UU,sys,params,Options)

whereUU is an input vector,x0 is the initial condition,sys is the MAT-
LAB simulation file. Thehybsim function simulates the systemsys for all
samples inUU . This is the reason why even if a system has no inputs it is
still necessary to have at least the time-line as input. Simulation results are
shown in Figure 4.11.

144 Tools for Formal Verification

4.9.4 Controller Synthesis: the Multi-Parametric Toolbox

Optimal controller synthesis. In [32] the authors propose a framework for
modeling systems where physical laws, logic rules and constraints are in-
terdependent. Models in the proposed formalism are denotedmixed logical
dynamical(MLD) systems. An MLD description consists of a set of linear
dynamic equations subject to linear inequalities involving real and integer
variables. Using the MLD formulation, the authors give an algorithm for the
synthesis of optimal control laws of a given discrete time hybrid system.

The proposed method to control hybrid systems is calledModel Predic-
tive Controland it is based on thereceding horizonphilosophy. At each given
time when a measurement of the system’s state is available, asequence of in-
put actions is computed based on the prediction of the futureevolution of the
system. Such a sequence is applied to the plant until a new measurement is
available. At that time, a new sequence is computed. Computing the sequence
of control actions is equivalent to solving a mixed-integerquadratic (MIQP)
or linear (MILP) problem (depending on the norm used in the cost function).
This technique requires the on-line solution of mixed-integer programs, a task
that is typically very computationally intense. In [30] thesame authors pro-
pose a new method based on multi-parametric programming that moves all
the computation off-line. Since the MLD representation hasbeen proved to be
equivalent to the piecewise affine (PWA) representation [88], we describe the
optimal control problem formulation and the main results for PWA systems
as it is done in [31, 124].

Consider a PWA system of the form:

x(k + 1) = Aix(k) + Biu(k) + fi (4.5)

s.t. Lix(k) + Eiu(k) ≤ Wi (4.6)

if [x′(k)u′(k)]′ ∈ Di, i ∈ I (4.7)

wherex ∈ R
n, u ∈ R

m, Di is a polyhedral set,I is an index set and the
matrices are of suitable dimensions. Let’s denote Equation4.5 to Equation 4.7
with x(k + 1) = fPWA(x(k), u(k)). The constrained finite-time optimal
control problem can be formulated as follows:

J∗
N (x(0)) = min

u0,...,uN−1

||Qfx(N)||l +
N−1∑

k=0

||Ru(k)||l + ||Qx(k)||l (4.8)

4.9. Hysdel 145

subject to

x(k + 1) = fPWA(x(k), u(k))

x(N) ∈ Xset

if l = 2, then Q = Q′ � 0, Qf = Q′
f � 0, R = R′ � 0

Let XN
f be the N-step feasible set, i.e. the set of initial statesx(0) for which

the constrained finite-time optimal control problem is feasible. Then the fol-
lowing theorem holds:

Theorem 1. Consider the constrained finite-time optimal control problem.
Then, the set of feasible parametersXN

f is convex and the optimizerU∗
N :

XN
f → R

Nm is continuous and piecewise affine, i.e.

U∗
N (x(0)) = Frx(0) + Gr if x(0) ∈ Pr = {x ∈ R

n|Hrx ≤ Kr},

r = 1, ..., R

The theorem says that the optimal controller generates a sequence of input
actions as an affine function of the plant’s state. The controller is indeed PWA.
This problem can be solved as a multi-parametric program where the partition
XN

f = {Pr}
R
r=1 is computed and for each partition the optimalFr andGr is

given. The algorithms are implemented in a MATLAB toolbox called Multi-
Parametric toolbox [124].

The Multi-Parametric Toolbox. The multi-parametric toolbox (MPT) is
available for download athttp://control.ee.ethz.ch/ mpt/downloads/. It is shipped
together with a set of additional packages likeCDD for polytope manipula-
tion and an HYSDEL interface that reads an HYSDEL specification and gener-
ates a MATLAB structure that is used as internal representation by the MPT.

For the purpose of illustrating how the MPT works, we show howa
PWA model is described directly in MATLAB . The system that we want to
control (the plant) is illustrated in Figure 4.12. The voltage vin is a trian-
gular waveform. Depending on the value of the inputu it is possible to
decide whether the load is connected toR1, R2 or disconnected from the
sources (we assume thatR1 andR2 are equal, and denote their value with
Rf). The system has three state variables:vc is the voltage across the load

146 Tools for Formal Verification

R1

R//Cu = 1

u = 0

vcu = 0.5

vin

−vin

t
s = 1

s = 0

vin

R2

Fig. 4.12 The system under control (hereR||C denotes the parallel connection of the load resistor and
capacitor).

which is the parallel connection of a resistor and a capacitor; vin is the in-
put voltage;s is a Boolean variable indicating if the input voltage has a
positive or a negative slope. The plant is specified as a MATLAB structure
sysStruct that lists the matricesAi, Bi, Ci, Di, the vectorsfi and gi, and
the bounds on the state and input variables. The polyhedral set Di must be
specified for each dynamici and is described in additional fields of the same
data structure by the matricesguardXi, guardUi and guardCi such that
guardXix + guardUiu ≤ guardCi. For instance, ifu = 0 then the state
update equations are:

vc(k + 1) = vc(k)(1 − T
(Rf + R)

RfRC
) + vin(k)

T

Rf C

vin(k + 1) = vin(k) + d ∗ T

s(k + 1) = s(k)

that are active in a polyhedral region defined respectively

s = 1 ∧ vin ≤ 1 ∧ u ≤ 0 if d > 0,

s = 0 ∧ −vin ≤ 1 ∧ u ≤ 0 if d < 0.

whered is the derivative of the input voltage.

4.9. Hysdel 147

Parameter Meaning

probStruct.N Prediction horizon

probStruct.Q Weights on the states

probStruct.R Weights on the inputs

probStruct.norm 1 or Inf for linear problem,2 for quadratic problem

probStruct.subopt lev Level of optimality, either0, 1 or 2

probStruct.Tset A polytope describing the terminal setXset
Table 4.1 Parameters of the controller synthesis algorithm.

The MATLAB structureprobStruct is used for setting up the synthesis prob-
lem aimed to automatically derive the controller. Table 4.1describes the most
important parameters that are stored inprobStruct. There are three possible
levels of optimality that can be specified:

• 0 seeks the cost-optimal solution that minimizes the cost function
in Equation 4.8;

• 1 seeks a time-optimal solution where the controller pushes a
given state to an invariant set around the origin as fast as possi-
ble;

• 2 is used for a low-complexity control scheme.

After the two MATLAB structuressysStruct andprobStruct have been de-
fined, a controller can be synthesized with the command
ctrl = mpt control(sysStruct,probStruct),
wherectrl is a MATLAB structure representing the synthesized controller.

The MPT offers a rich set of features for debugging and optimizing the
final result. It is possible to visualize the regions of the synthesized con-
troller with the commandplot(ctrl). Furthermore, a SIMULINK library is pro-
vided to instantiate and connect a plant and a controller in closed loop. The
SIMULINK blocks read the plant and controller structures from the MAT-
LAB workspace and a simulation can be run to check if the controller per-
formances are as expected. In our case we want to synthesize acontroller
that selectsu in such a way that the statevc is close to the input peak volt-
age, which is equal to one. For this purpose, we set the plant outputy equal
to the statevc and set the parameterprobStruct.yref = 1 which means that the

148 Tools for Formal Verification

Fig. 4.13 Simulation of the closed loop system.

controller has to minimize the distance of the plant output from the reference
output. We also chooseprobStruct.subopt lev = 0, probStruct.N = 2. The result-
ing controller, which has27 regions, is shown in Figure 4.13 together with
the SIMULINK model. The simulation trace was obtained using the command
mpt plotTimeTrajectory(ctrl,x0,horizon,Options)

that simulates the closed loop system for a number of steps specified byhori-

zon starting fromxo. The resulting controller behaves like expected, i.e. it
rectifies the input voltage in order to minimize the error with respect to the
givenyref .

4.9.5 Discussion

HYSDEL is a language for the description of discrete hybrid automata. The
language was developed targeting the modeling of discrete-time, affine dy-
namical systems. There are important features that are missing from the lan-
guage. First of all hierarchy: HYSDEL programs are flat, i.e., it is not possible
to instantiate subsystems and compose them (not even the syntax supports
it). Features like declaration, instantiation, hiding, and object-orientation are

4.9. Hysdel 149

also missing. In fact, it is not possible to declare objects of any sort and then
instantiate them to compose a system of more complex objects.

The possibility of linking a HYSDEL description to a synthesis flow is a
unique feature. The MPT is in a very advanced stage of development and has
been used in industrial applications for synthesizing controller and generating
code. It suffers from the intrinsic complexity of the synthesis algorithm but
it provides a very powerful infrastructure for debugging and post-processing
synthesis results. Being embedded in the MATLAB environment it provides a
user friendly and familiar interface.

5
Comparative Summary

In this section we give a comparative summary of the design approaches,
languages, and tools presented in this paper.

An important, and expected, conclusion of our analysis is that no single
tool covers all the needs of designers that use hybrid systemas models to
solve their problems. While being able to capture the behavior of the system
under study in an intuitive and compact way and simulating itis an impor-
tant feature for any design framework, formal analysis and synthesis tools
have a much higher potential in delivering a substantial productivity gain and
error-free designs. These tools rely upon abstraction and hierarchy to solve
industrial-strength problems. The choice of abstraction levels and of decom-
positions into parts is not unique and it is rare that a designer can find the right
solution at the first try. Hence, interactive environments where simulation is
used to guide the selection of the appropriate abstractionsand decompositions
are indispensable to advance the state of the art in the design and verification
of hybrid systems.

To build this kind of environment, it is essential to providea common
ground for the different tools to integrate. When models areas complex as
hybrid systems, defining this common ground is by no means trivial.

Table 5.1 and Table 5.2 summarize the distinctive features of the various

150

151

Name Main Purpose
CHARON formal semantics for hierarchy, concurrency, refinement
CHECKMATE formal semantics (TEDHS) for simulation and verification
d/dt safety verification of hybrid systems with linear continousdynamics
HSOLVER safety verification of hybrid systems
HYSDEL modeling of discrete-time affine dynamical systems
HYTECH modeling and verification of linear hybrid automata
HYV ISUAL modeling and simulation of hybrid systems, hierarchy support
MASACCIO support for concurrent, sequential, and timed compositionality
MODELICA object-oriented modeling of heterogeneous physical systems
PHAVER safety verification of affine hybrid systems
SCICOS modeling and simulation of hybrid systems
SHIFT modeling ofdynamicnetworks of hybrid automata
SIMULINK analysis and simulation, hierarchy support, model discretizer
STATEFLOW FSM, statechart formalism, hierarchy support.
SYNDEX real-time code generation, distribution and scheduling

Table 5.1 Main purpose of the various languages, modeling approaches, and toolsets.

Name Nature Additional Features
CHARON modeling language simulator, type checker, interface to JAVA

CHECKMATE verification toolbox integrated with MATLAB SIMULINK /STATEFLOW

d/dt verification tool synthesis of safe switching controllers
HSOLVER verification tool accepts non-linear input constraints
HYSDEL modeling language generation of input for MATLAB simulation
HYTECH symbolic modele checker support for parametric analysis
HYV ISUAL visual modeler PTOLEMY II-based block-diagram editor
MASACCIO formal model enablesassume-guarantee reasoning
MODELICA modeling language MODELICA standard library, commercial tools
PHAVER verification tool support for equivalence/refinement between hybrid automata
SCICOS hybrid system toolbox C code generation, interface to SYNDEX

SHIFT programming language C code generation,λ-SHIFT for real-time control
SIMULINK interactive tool MATLAB -based, library of predefined blocks
STATEFLOW interactive tool chart animation, debugger
SYNDEX system-level CAD HW/SW codesign support, formal verification

Table 5.2 Nature and features of the various languages, modeling approaches, and toolsets.

modeling and design environments, programming languages,simulators and
tools for hybrid systems that we have discussed in the previous sections.

Table 5.3 shows the approaches adopted by each language for model-
ing the basic hybrid system structure. The first column showshow the dis-
crete automata are described in the respective languages. While most of them
provide support to describe finite state machines, discretestates cannot be
clearly distinguished in SIMULINK /STATEFLOW, MODELICA and SCICOS.
In SIMULINK /STATEFLOW the discrete automata can be described using a
STATEFLOW chart but it is also possible to use SIMULINK blocks to encode
state (as we did in the case of the full-wave rectifier). MODELICA does not
define locations and transitions. It is up to the user to definediscrete states
and derive a finite state machine using the statements that the language pro-
vides. SCICOS follows an approach similar to SIMULINK as it offers a library

152 Comparative Summary

Name Automata State-to-
Dynamics

Supported Guards Invariants Reset Maps

Definition Mapping Dynamics

SIMULINK /STATEFLOW STATEFLOW and
SIMULINK switches

STATEFLOW out-
put selecting
state evolution

No limitations Conditions
on STATE-
FLOW inputs
and threshold
crossing detector

Not supported Integrator’s reset
from STATE-
FLOW output

MODELICA Not explicitly de-
fined

Events enabling
equations

No limitations Triggering
relations on
variables (when
statement)

Not an explicit
language feature

Through
reinit state-
ment

HYV ISUAL Explicit finite
state machine
representation

Discrete-state re-
finement

No restrictions Triggering con-
ditions on state
variables

Not supported Assignment on
the FSM edges

SCICOS Not explicitly de-
fined

Events switching
dynamics

No restrictions Threshold detec-
tors

Threshold detec-
tors

Reinitialization
of integrators’
state

SHIFT Textual defini-
tion of locations
and transitions

Flows as loca-
tions’ arguments

No Restrictions Conditions on
system variables

Conditions on
system variables

Assignment
statements

CHARON Mode composi-
tions and refine-
ment

Differential and
algebraic con-
straints inside
modes

No restrictions Enabling condi-
tions on system
variables

Constraints on
system variables

Assignment
statements

HYTECH Explicit declara-
tion of locations
and transitions

Flows defined in
each location

Convex predicate
over derivatives
of state variables

Conjunction of
linear constraints

Convex predicate
over state vari-
ables

Assignment
statements

PHAVER Explicit declara-
tion of locations
and transitions

Flows defined in
each location

Affine Conjunction of
linear constraints

Convex predicate
over state vari-
ables

Assignment
statements

HSOLVER Declaration of
modes and jump
constraints

Flows defined in
each mode

General linear
and non-linear
constraints

General con-
straints

General con-
straints

Assignment
statements

CHECKMATE STATEFLOW Mode selector
from STATE-
FLOW to a set of
dynamics

Linear or non-
linear (simu-
lation only or
approximation to
linear dynamics)

Affine inequali-
ties

Not supported Affine maps

d/dt Explicit declara-
tion of locations
and transitions

Flows defined in
each location

Linear Convex polyhe-
dra

Convex polyhe-
dra

Not supported
in the version
shipped to us

HYSDEL Logic formulas
on Boolean
variables

Mode selectors Discrete Time
and Linear

Threshold condi-
tions on system
variables

Not supported Modeled as one
step dynamics

Table 5.3 Comparing the modeling approaches: modeling the basic hybrid system structure.

of components that can be interconnected to build a hybrid system. Further,
in SCICOS it is not easy to provide guidelines for building state machines in
a way that can be easily reverse engineered.

Another basic feature is the association of a dynamical system to a spe-
cific state of the hybrid automaton. HYV ISUAL and CHARON have perhaps
the most intuitive syntax and semantics for this purpose. InHYV ISUAL a
state of the hybrid automaton can be refined into a continuoustime system.
CHARON allows a mode to be described by a set of algebraic and differen-
tial equations. In CHECKMATE, SIMULINK , and HYSDEL a hybrid system is
modeled as two main blocks: a state machine and a set of dynamical systems.
The automaton is described by a finite state machine where a transition can
be triggered by an event coming from a particular event-generation block that
monitors the values of the variables of the dynamical system. On the other

153

Name Hierarchy Composition OO Causality Algebraic Loops Continuous/Discrete
Interface

SIMULINK /STATEFLOW Yes Through contin-
uous variables
(SIMULINK) and
discrete events
(STATEFLOW)

No Causal Solved through
explicit instantia-
tion of algebraic
loops solvers

STATEFLOW out-
puts acting on
SIMULINK blocks

MODELICA Yes Through connec-
tion statements

Yes Non-causal
classes and
causal functions

Simulator depen-
dent

Events enabling
equations

HYV ISUAL Yes Through ports
exposing internal
variables, both
continuous and
discrete

Yes Causal Not supported States refined
into dynamical
systems and spe-
cial conversion
blocks

SCICOS Yes Through contin-
uous and discrete
variables

No Causal Not supported Discrete states
affecting contin-
uous states

SHIFT Yes Through con-
tinuous vari-
ables, automata
transitions syn-
chronization and
components

Yes Causal Not supported Location associ-
ated with flows
and reset maps

CHARON Yes Through connec-
tions of agents’
variables

No Causal Not supported Modes defining
differential and
algebraic con-
straints and reset
maps

HYTECH No Synchronization
of automata and
shared variables

No Non-Causal Yes Locations associ-
ated with flows
and reset maps

PHAVER No Synchronization
of automata and
connection by
name

No Non-Causal Yes Locations associ-
ated with flows
and reset maps

HSOLVER No No No Non-Causal Yes Modes associ-
ated with flows
and reset maps

CHECKMATE No No No Causal Not supported Mode selectors
switching dy-
namics and affine
reset maps

d/dt No No No Causal Yes Location associ-
ated with flows

HYSDEL No No No Causal Not supported Mode selec-
tors switching
dynamics

Table 5.4 Comparing the modeling approaches: language features.

hand, the finite state machine can generate events that are sent to a mode-
change block whose purpose is to select a particular dynamics depending on
the events. SCICOS implements the automaton directly as an interconnection
of blocks whose events can affect the continuous state of those blocks that
implement the continuous dynamics. In MODELICA, the occurrence of an
event can enable or disable equations that affect the continuous evolution of
the system variables.

The type of dynamics supported by each language depends on the main
target of the corresponding tool. For tools targeting simulation, there are
very few restrictions, dynamics can be linear or non-linear. Some tools like
HYTECH andd/dt, only allow linear dynamics. This restriction is needed in
order to limit the complexity of the verification and synthesis algorithms. The

154 Comparative Summary

same kind of restrictions are imposed on the specification ofguard conditions
and invariants. Other verification tools, like CHECKMATE and HSOLVER,
allow one to use more complicated dynamics and perform an approxima-
tion of the trajectories. Their application is still limited to simple examples.
PHAVER allows the specification of affine dynamics and it also supports
composition of hybrid automata. The verification algorithmis very efficient
and can be instructed by the user. It also has the capability of checking re-
finements and simulation relations. Invariants are only explicitly supported
by CHARON, HYTECH, d/dt, PHAVER and HSOLVER while the other tools
have triggering guards semantics.

While SIMULINK /STATEFLOW does not explicitly distinguish between
discrete and continuous signals, all the other languages do. Some languages
like CHARON and MODELICA use special type modifiers to indicate whether
a variable is discrete or continuous. However, thesemantics is differentin
the two cases. In CHARON a discrete variable is defined to be constant be-
tween two events and, therefore it has a derivative equal to zero. In MOD-
ELICA, instead, the derivative of discrete variables is not defined. Graphical
languages like HYV ISUAL, SIMULINK , and SCICOS rely on attributes as-
sociated with ports. Also, signal types can be automatically inferred during
compilation through a static analysis of the system topology. HYSDEL and
CHECKMATE describe the hybrid system as a finite state machine connected
to a set of dynamical systems, which makes the separation of discrete and
continuous signals very sharp.

Table 5.4 shows the features provided by the different tools. Tools are
ordered from the one that gives more freedom to the designer to the most
restrictive one.

Two very important features for modeling complex systems are hierarchy
and composition. Not all languages support the compositionof hybrid sys-
tems: CHECKMATE, d/dt and HYSDEL only allow the designer to describe
a monolithic model. Not supporting composition requires the user to input a
hybrid automaton that is the result of the cross product (composition) of the
constituent automata. This usually leads to a model with a huge number of
states.

An interesting and useful feature is object orientation (OO). By ob-
ject orientation we mean the possibility of defining objectsand extending
them through inheritance and field/method extension. From this viewpoint,

155

SIMULINK is not object oriented since it is not possible to define a subsystem
and then inherit its properties and add other capabilities.

Another very important feature is the possibility of modeling non-causal
systems. MODELICA and the verification tools are the only languages that
allow non-causal modeling.

None of the simulation languages considered in this paper has a clear def-
inition of the semantics of programs that contain algebraicloops. All of them
rely on the simulation engine that cannot solve algebraic loops and will stop
with an error message. We believe that a language has to give ameaning to
programs containing algebraic loops and the meaning shouldbe independent
from the simulator’s engine. The situation is different forverification tools
that either do not allow the creation of algebraic loops by construction, or
they handle algebraic loops symbolically.

The last column in Table 5.4 describes how discrete and continuous sig-
nals and blocks interact with each other. CHECKMATE and HYSDEL use an
event-generator and a mode-change block. HYV ISUAL and SIMULINK pro-
vide special library blocks to convert between discrete andcontinuous sig-
nals. In SCICOS, a block can have both continuous and discrete inputs as well
as continuous and discrete states. Discrete states can influence continuous
states. CHARON and MODELICA have special modifiers to distinguish be-
tween discrete and continuous signals. As in all other languages, assignments
of one to the other are not allowed and can be statically checked (by a simple
type checker).

6
The Future: Towards the Development of a

Standard Interchange Format

We argued that a single environment cannot offer a complete solution to the
needs of designers who use hybrid models to represent the system under de-
velopment. Hence, having a framework where different toolscan interact and
exchange information is of paramount importance to advancethe state-of-the-
art in the field of hybrid systems. One way to accomplish this is to adopt a
standard language with its syntax and semantics being the basis for the devel-
opment of a number of design tools including simulation, formal verification
and synthesis. While this would be highly desirable, it would require a mas-
sive restructuring of several of the available tools and environments, an almost
impossible proposition. An alternative that has been successful in Electronic
Design Automation (EDA) is to develop aninterchange formatthat serves as
a bridge among the different tools. We believe this path is feasible and we
give some insight on how to design this format.

An interchange formatis a file, or a set of files, that contains data in
a given syntax that is understood by different interacting tools. It is not a
database nor a data structure, but a simpler object whose goal is to foster the
exchange of data among different tools and research groups.It is important
to understand the differences between modeling languages and interchange
formats.

156

6.1. Semantic-Free and Semantically-Inclusive Interchange Formats in EDA. 157

The goal of a modeling language is enabling the formal representation
of selected aspects of a system. As such, a modeling languageis always re-
strictive (only selected aspects are modeled), formal (haswell defined con-
crete syntax, abstract syntax, and semantics) and unambiguous. The goal of
an interchange format is to communicate models among tools using differ-
ent modeling languages. Accordingly, interchange formatsare not restrictive
(all syntactically and semantically sound models can be interchanged), syn-
tax free (allow tools to use different domain specific concrete syntax) and
unambiguous.

There are two opposite approaches for defining model interchange for-
mats. In thesemantic free approachthe interchange format is nothing more
than a common transfer format for models. In this case model transformers
(semantic translators) must provide a pairwise mapping among the tool mod-
els based on their shared portion of the semantics. In thesemantically inclu-
sive approach, a common modeling language and transfer format is defined
for model interchange. This has broad enough semantics to allow exporting
and importing individual tool models to and from this sharedlanguage.

6.1 Semantic-Free and Semantically-Inclusive Inter-
change Formats in EDA.

In the early 1980s, the Integrated Circuit community observed a proliferation
of tools from different companies and for different purposes. Given the rel-
ative immaturity of EDA, and driven by the necessity of maintaining market
share, each EDA company based its set of tools on a proprietary represen-
tations whose details were not known to other companies. In addition, the
largest IC companies had significant internal EDA investments; their tools
were incompatible with each other and with the EDA vendors’ offerings mak-
ing the construction of complete design flows technically very challenging if
not impossible.

In 1983, representatives of the major IC companies, of some EDA com-
panies and of the University of California at Berkeley formed the Electronic
Design Interchange Format (EDIF) Steering Committee with the intent of
defining a standard format for interchanging design information across EDA
tools. EDIF was semantically “free” and defined exclusivelythe syntax of
the interchange format. After the definition of the interchange format, each

158 The Future: Towards the Development of a Standard Interchange Format

company started developing translators to write and read designs. Besides
limitations in the expressiveness of the chosen syntax, themain problem with
the early versions of EDIF was the ambiguity of the language whose free in-
terpretation lead to the definition of many flavors of the samestandard. The
meaning of an EDIF description was indeedencoded in the translators. To
solve this problem, the EDIF Committee realized that the such ambiguities
had to be ruled out by giving a more precise semantics to EDIF.This is why,
in the latest version of the interchange format, an information model is at-
tached to a description. The information model is describedin the formal
language EXPRESS and has a formally defined semantics.

The Library Exchange Format/Design Exchange Format (LEF/DEF) were
defined by Cadence Design Systems to exchange data across synthesis and
layout tools. These formats have been recently made publicly available as
part of the Open Access initiative, an important project to define a common
data base and data format for EDA. The approach followed in this case is to
provide also a C++ application programming interface (API)that can be used
to interface tools based on these formats and, that ultimately offer a unique
semantic interpretation of these formats. The user of the interchange format
does not directly read or write the models but rather uses theAPI to import
and export the necessary information.

The Berkeley Logic Interchange Format (BLIF) is a hardware description
language for the hierarchical description of sequential circuits which serves as
an interchange format for synthesis and verification tools.The BLIF language
has a very precise semantics that can be used to define the implementation of
finite state machine in terms of latches and combinational logic.

Semantically-free interchange formats are very flexible but their interpre-
tation of the models written in such format is ambiguous. These interchange
formats cannot be used to capture models in a domain like hybrid systems
where there are semantic differences among tools that a translator should be
able to understand for a correct translation.

Semantically-inclusive interchange formats impose a specific model. The
advantage in this case is that the interpretation of a model is unambiguous. In
the case of BLIF, this approach is a valuable proposition because its model
(boolean algebra and state machines) is universally accepted in the field of
logic synthesis and verification. Semantically-inclusiveinterchange formats,
though, reduce the degrees of freedom of the tools that sharethe data using

6.2. The Hybrid System Interchange Format.159

the format. This may not be acceptable today in the case of thehybrid system
domain where there is a great deal of semantic differences among simulation,
verification and synthesis tools. We review next what has been done in this
domain and we propose a novel approach that should solve the open issues in
interchange formats for hybrid systems.

6.2 The Hybrid System Interchange Format.

The definition of astandardinterchange format among tools that deal with
hybrid systems would create a fertile ground for further growth of the field
and for the pervasive use of hybrid technology in industry. In the U.S., the
DARPA MoBIES project made the importance of a standard interchange for-
mat very clear and supported the development of theHybrid Systems Inter-
change Format(HSIF) as a way of fostering interactions among its partici-
pants. HSIF has been developed by G. Karsai, R. Alur and colleagues at Van-
derbilt University and the University of Pennsylvania. HSIF models represent
a system as a network of hybrid automata. Each hybrid automaton is a finite
state machine in which states include constraints on continuous behaviors
and transitions describe discrete steps. Automata in a network communicate
by means of variables that can be of two kinds: signals and shared variables.
Signals are used to model predictable execution with synchronous communi-
cation between automata. Shared variables are used for asynchronous com-
munication between loosely coupled automata. The current HSIF specifica-
tion is given in [83, 145], while a synthetic analysis of its main features can
be found in [45]. HSIF is based on a semantically inclusive approach. How-
ever, in its current stage, the HSIF specification has the following unresolved
issues:

(1) It is semantically too rich to become a semantic free com-
mon transfer format, but semantically too restrictive to become
a common modeling language. For example, it prevents “by-
construction” zero-time loops among FSMs to eliminate the risk
of non-deterministic behavior stemming out of a combination of
deterministic subsystems.

(2) It is syntactically too restrictive because it lacks support for hierar-
chical FSMs. This can be problematic as other models often allow

160 The Future: Towards the Development of a Standard Interchange Format

the creation of a hierarchical network of FSMs. For instance, ex-
porting a HYV ISUAL hierarchical model into HSIF requires that
the hierarchy of each FSM be flattened first, a transformationthat
is hard to reverse.

On the other hand, it must be noted that HSIF is not a completedproposal, but
rather a work in progress. It helped MoBIES researchers understand some of
the fundamental problems in forming a standardized semantics for tools and
some of the hard issues of having different kinds of semantics in modeling
languages. The jury is still out to determine whether interchange formats will
evolve toward a semantic free or semantically inclusive direction. We argue
that the elimination of semantically unsound behaviors should be up to the
tools, particularly the synthesis tools, and not to the interchange format. Oth-
erwise, the format may not be able to accept the description of legitimate
systems in tools where a larger set of behaviors is accepted.While we advo-
cate that tools should be very careful in adopting liberal models, we believe
that the design methodology should be enforced by tools not by interchange
formats.

6.3 Requirements for a Standard Interchange Format.

To further motivate our views, we offer here some considerations about in-
terchange formats that are the result of experience in the field of Electronic
Design Automation and of a long history in participating in the formation
of standard languages and models for hardware design. The following list
summarizes what we believe are fundamental characteristics of any inter-
change format for tools and designs (a more detailed discussion can be found
in [147]). An interchange format must:

• support all existing tools, modeling approaches and languages in
a coherent global view of the applications and of the theory;

• support heterogeneous modeling, i.e. the ability of representing
and mixing different models of computation.

• be open, i.e., be available to the entire community at no costand
with full documentation;

• support a variety of export and import mechanisms;
• support hierarchy and object orientation (compact representation,

6.3. Requirements for a Standard Interchange Format.161

Fig. 6.1 Role of an interchange format for design tools.

entry error prevention).

By having these properties, an interchange format can become the formal
backbone for the development of sound design methodologiesthrough the as-
sembly of various tools. In general, a design automation flowis composed of
tools that have different purposes: specification, simulation, synthesis, formal
verification. Hence, they are often based on different formalisms and operate
on the design at different levels of abstraction. The role ofthe interchange
format is to facilitate the translation of design specifications from one tool
to the other. As illustrated in Figure 6.1, the process of moving from the de-
sign representation used by toolA to the one used by toolB is structured in
two steps: first, a representation in the standard interchange format is derived
from the design entry that is used byA, then a preprocessing step is applied to
produce the design entry on whichB can operate. Notice that toolB may not
need all the information on the design that were used byA and, as it operates
on the design, it may very well produce new data that will be written into the
interchange format but that will never be used byA. Naturally, the semantics
of the interchange format must be rich enough to capture and “protect” the
different properties of the design at the various stages of the design process.
This guarantees that there will be no loss going from one design environment
to another due to the interchange format itself. The format is indeed aneutral
go-between.

162 The Future: Towards the Development of a Standard Interchange Format

6.4 Metropolis-based abstract semantics for Hybrid Sys-
tems.

Based on our previous discussions, we believe thatan interchange format
should 1) be flexible enough to capture the largest possible class of mod-
els in use today and even tomorrow and 2) at the same time should have
a precise semantics to avoid ambiguity.Therefore, we believe that an inter-
change format must be based on a preciseabstract semanticsthat can be
refined into concrete semantics depending on the specific design tools that
imports/exports a model.

In [147] we offered a proposal for an interchange format for hybrid
systems whose formal semantics is based on the METROPOLIS Meta-
Model [162]. METROPOLIS is an ambitious project supported by the GSRC
(Gigascale System Research Center), CHESS (Center for Hybrid and Em-
bedded Software Systems) and grants from industry. The ideais to provide
an infrastructure based on a model with precise semantics, yet general enough
to support the models of computation proposed so far and, at the same time,
to allow the invention of new ones. The model, called METROPOLISMeta-
Model for its characteristics, is capable of not only capturing the functional-
ity and the analysis, but also the architecture descriptionand the mapping of
functionality to architectural elements. Since the model has a precise seman-
tics, it can be used to support a number of synthesis and formal analysis tools
in addition to simulation. METROPOLISdoes not dictate the use of a particu-
lar design language nor of a unified flow for all applications:the infrastructure
is built so that it offers a translation path from specification languages to the
metamodel. In addition, mechanisms are provided to allow the integration of
external tools, thus alleviating the problems of building flows with tools that
are developed independently and with different semantic models.

METROPOLISproposes a design methodology for embedded system de-
sign based on the following key aspects. First of all, it leaves the designer
relatively free to use the specification mechanism (graphical or textual lan-
guage) of choice, as long as it has a sound semantic foundation (model of
computation[67, 130]). Secondly, the same formalism is used to represent
both the embedded system and some abstract relevant characteristics of its
environment and implementation platform [151]. Finally, it separates orthog-
onal aspects [112], such as: computation vs. communication, functionality vs.

6.4. Metropolis-based abstract semantics for Hybrid Systems. 163

architecture, behavior vs. performance indices. This separation results in bet-
ter re-use, because it decouples independent aspects, thatwould otherwise be
tied, e.g., a given functional specification to low-level implementation details,
or to a specific communication paradigm, or to a scheduling algorithm. These
techniques, combined, also facilitate the extensive use ofsynthesis, system-
level simulation, and formal verification techniques in order to speed up the
design cycle.

A detailed discussion of METROPOLIScan be found in [27, 28]. The com-
plete definition of the metamodel is given in [162]. Finally [127] discusses the
modeling of architectural resources in METROPOLIS.

The main challenge in defining an interchange format is to define a lan-
guage with a formal semantics that remains general enough asit provides
an easy translation path to/from all other languages of interest. In our pro-
posal [147], the interchange format definesprocessesfor the solution of equa-
tions andmediafor communicating results among processes. These are orga-
nized as a network that consists of several layers, each corresponding to a par-
ticular aspect of the hybrid computation, such as the discrete dynamics, the
continuous dynamics and the specific equations involved in the description.
However, while the meta-model semantics provides the basisfor interpreting
and evaluating the model,the precise semantics of the network is left unspec-
ified. This is an essential aspect of the language architecture. To complete the
description of the model, the user enters a separate view, which consists of a
collection of schedulers that control the evolution of the network of processes,
thereby describing the way in which the computation is performed. Because
this view is also written using the Meta-Model,the semantics of the model is
part of the interchange format itself, and is therefore accessible to tools and
translators. By doing so, users of the interchange format are not only able to
describe the structure of a model, but also the particular way in which the
structure should be interpreted. This trades off flexibility at the expense of
some additional complexity in the description of a system. It must be em-
phasized, however, that the characterization of a hybrid model in terms of
the Meta-Model must be done only once. In this sense, the ideais similar
to defining interpretation schemas in extensible mark-up languages such as
XML [175]. The systems that use a specific model can then sharethe same
scheduling network.

The abstract semantics of the interchange format proposed in [147] is re-

164 The Future: Towards the Development of a Standard Interchange Format

ported in [146]. To facilitate the customization to a specific semantics, the
model designer uses generic schedulers and refines their implementation by
defining the behavior of certain abstract functions that areinvoked during a
scheduling cycle. These, for example, have to do with the initialization, the
dynamic determination of the step (or integration) size andthe resolution of
the equations. The interchange format has also been designed to take advan-
tage of the intrinsic hierarchy of the system. In particular, the function that
determines the current valuation of the system is partitioned among the var-
ious components, thus enhancing modularity and maintaining encapsulation.
In [146], we also illustrate how the interchange format can be used to create
a design flow that includes tools as diverse as HYV ISUAL, MODELICA and
CHECKMATE.

6.5 Conclusions.

In our opinion, HSIF is an excellent model for supporting clean design of hy-
brid systems but not a true interchange format because it does not support the
models of some important hybrid systems tools and it does notallow hierar-
chical representations. The SIMULINK /STATEFLOW internal format could be
ade facto standardbut it is not open nor does it have features that favor easy
import and export. MODELICA has full support of hierarchy and of general
semantics that subsumes most if not all existing languages and tools. As such,
it is indeed an excellent candidate but it is not open. In addition, all of them
have not been developed with the goal of supporting heterogeneous imple-
mentations. On the other hand, the METROPOLISmetamodel has generality
and can be used to represent a very wide class of models of computation. It
has a clear separation between communication and computation as well as
architecture and function. However, while the metamodel itself is perfectly
capable to express continuous time systems, there is no tooltoday that can
manage this information in METROPOLIS. In conclusion, we believe that no
approach is mature enough today to be recommended for general adoption.
However, we also believe that combining and leveraging HSIF, MODELICA,
and the METROPOLISmetamodel, we can push for the foundations of a stan-
dard interchange format as well as a standard design capturelanguage where
semantics is favored over syntax. Consequently, we have made a first step in
this direction by proposing a new interchange format and by presenting some

6.5. Conclusions. 165

examples of its application to the definition of a design flow that includes
HYV ISUAL, MODELICA and CHECKMATE to enter the design, simulate it
and formally verify its properties [147, 146]. The new interchange format is
at this point a proposal, since work still needs to be done to support it with
the appropriate debugging and analysis tools and with translators to and from
existing tools. We are confident that a variation of our proposal will be even-
tually adopted by the community interested in designing embedded systems
with particular emphasis on control. We are open to any suggestion and rec-
ommendation to improve our proposal.

Acknowledgements

We gratefully acknowledge the discussions on this topic with Janos Stzi-
panovits of Vanderbilt University and its team, Edward Lee,Jonathan Sprin-
kle and Shankar Sastry of UC Berkeley, Marika Di Benedetto ofUniver-
sity of L’Aquila, Albert Benveniste of INRIA, Tiziano Villaof University
of Udine, Goran Frehse of Verimag, Thao Dang of CNRS, the PARADES
team, and in particular Alberto Ferrari and Andrea Balluchi. This work has
been supported in part by the Columbus Project of the European Commu-
nity, the GSRC (MARCO Award#: 2003-DT-660), the Artist 2 andHYCON
Networks of Excellence, and by CHESS (the Center for Hybrid andEmbed-
ded Software Systems), which receives funding from the National Science
Foundation (NSF award number CCF-0424422) and from the following com-
panies: Agilent, General Motors, HP, Honeywell,Infineon, Samsung, Toyota
and United Technology.

166

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model checking in dense real time.Information
and Computation, 104(1):2–34, 1993.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger,P. H, X. Nicollin, J. Sifakis,
and S. Yovine. The algorithmic analysis of hybrid systems.Theoretical Computer
Science, 138(1):3–34, February 1995.

[3] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivancic, V. Kumar, I. Lee, P. Mishra,
G. Pappas, , and O. Sokolsky. Hierarchical hybrid modeling of embedded systems. In
T. A. Henzinger and C. M. Kirsch, editors,EMSOFT 2001: Embedded Software, First
International Workshop, volume 2211 ofLecture Notes in Computer Science, Tahoe
City, CA, USA, 2001. Springer-Verlag.

[4] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivancic, V. Kumar, I. Lee, P. Mishra, G. J.
Pappas, and O. Sokolsky. Hierarchical modeling and analysis of embedded systems.
Proceedings of the IEEE, 91(1):11–28, January 2003.

[5] R. Alur, A. Das, J. Esposito, R. Fierro, Y. Hur, G. Grudic,V. Kumar, I. Lee, J.P. Os-
trowski, G. Pappas, J. Southall, J. Spletzer, and C.J. Taylor. A framework and archi-
tecture for multirobot coordination. InProc. ISER00, 7th Intl. Symp. on Experimental
Robotics, pages 289–299, 2000.

[6] R. Alur and R. Grosu. Modular refinement of hierarchic reactive machines. InPrinci-
ples of Programming Languages, pages 390–402. ACM Press, 2000.

[7] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular refinement of hierarchic reac-
tive machines. InProc. of the 27th Annual ACM Symp. on Principles of Programming
Languages, pages 390–402, 2000.

[8] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specification of hybrid
systems in Charon. In N.A. Lynch and Krogh B.H, editors,Proc. of the Third Intl.

167

168 References

Work. on Hybrid Systems: Computation and Control, volume 1790 ofLecture Notes in
Computer Science, pages 6–19. Springer-Verlag, 2000.

[9] R. Alur and T. A. Henzinger. Modularity for timed and hybrid systems. InCONCUR
’97: Eight International Conference on Concurrency Theory, volume 1243 ofLecture
Notes in Computer Science, pages 74–88. Springer-Verlag, 1997.

[10] R. Alur, T. A. Henzinger, and P. H. Ho. Automatic symbolic verification of embedded
systems. InProc. of the 14th Annual Real-time Systems Symp., pages 2–11. IEEE,
1993.

[11] R. Alur, T. A. Henzinger, and P. H. Ho. Automatic symbolic verification of embedded
systems.IEEE Transactions on Software Engineering, 22:181–201, 1996.

[12] R. Alur, T. A. Henzinger, and E. D. Sontag, editors.Hybrid Systems III: Verification
and Control, Proceedings of the DIMACS/SYCON Workshop, October 22-25, 1995,
Rutgers University, New Brunswick, NJ, USA, volume 1066 ofLecture Notes in Com-
puter Science. Springer, 1996.

[13] R. Alur, S. Kannan, and S. La Torre. Polyhedral flows in hybrid automata. In F. W.
Vaandrager and J. H. van Schuppen, editors,HSCC ’99: Proceedings of the Second
International Workshop on Hybrid Systems, volume 1569 ofLecture Notes in Computer
Science, pages 5–18, London, UK, 1999. Springer-Verlag.

[14] R. Alur and G. J. Pappas, editors.Hybrid Systems: Computation and Control, 7th Inter-
national Workshop, HSCC 2004, Philadelphia, PA, USA, March25-27., 2002, volume
2993 ofLecture Notes in Computer Science. Springer, 2004.

[15] A. Angermann, M. Beuschel, M. Rau, and U. Wohlfarth.MATLAB, Simulink, State-
flow: grundlagen, toolboxen, beispiele (MATLAB, Simulink,Stateflow: fundamentals,
toolboxes, examples). Oldenbourg-Verlag, 2003.

[16] M. Antoniotti and A. Gollu. SHIFT and Smart AHS: a language for hybrid system
engineering modeling and simulation. InProceedings of the Conference on Domain-
Specific Languages, Santa Barbara, CA, USA, Oct. 15-17 1997.

[17] P. J. Antsaklis, editor.Special Issue on Hybrid Systems: Theory and Applications,
volume 88 ofProc. of the IEEE, July 2000.

[18] P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors. Hybrid Systems II, volume
999 ofLecture Notes in Computer Science. Springer, 1995.

[19] P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors. Hybrid Systems IV, volume
1273 ofLecture Notes in Computer Science. Springer, 1997.

[20] P. J. Antsaklis and A. Nerode, editors.Hybrid Control Systems, Special Issue, vol-
ume 43 ofIEEE Transactions on Automatic Control, April 1998.

[21] E. Asarin, O. Bournez, T. Dang, , and O. Maler. Approximate reachability analysis of
piecewise linear dynamical systems. In B. Krogh and N. Lynch, editors,HSCC 00: Hy-
brid Systems—Computation and Control, volume 1790 ofLecture Notes in Computer
Science, pages 20–31. Springer-Verlag, 2000.

[22] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli. Effective synthesis of switch-
ing controllers for linear systems.Proceedings of the IEEE, 88(7):1011–1025, July
2000.

[23] E. Asarin, T. Dang, and O. Maler. d/dt: A verification tool for hybrid systems. InProc.
of the 40th IEEE Conf. on Decision and Control, pages 2893 – 2898, 2001.

[24] E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of hybrid systems. In
Proc. of the 14th Intl. Conf. on Computer-Aided Verification, pages 365–370, 2002.

References 169

[25] Modelica Association. Modelica - a unified object-oriented language for physical sys-
tems modeling, language specification, dec 2000.

[26] R. Bagnara, E. Ricci, E. Zaffanella, and a Hill. Possibly not closed convex polyhedra
and the parma polyhedra library, 2002.

[27] F. Balarin, H. Hsieh, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, and
Y. Watanabe. Metropolis: an integrated design environmentfor electronic system de-
sign. IEEE Micro, 2003.

[28] F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, M. Sgroi, and
Y. Watanabe. Modeling and designing heterogeneous systems. Technical Report
2002/01, Cadence Berkeley Laboratories, January 2002.

[29] A. Balluchi, A. Casagrande, P. Collins, A. Ferrari, T. Villa, and A. L. Sangiovanni-
Vincentelli. Ariadne: a framework for reachability analysis of hybrid automata. In17th
International Symposium on Mathematical Theory of Networks and Systems (MTNS),
submitted 2006.

[30] A. Bemporad, F. Borrelli, and M. Morari. Piecewise linear optimal controllers for
hybrid systems. InAmerican Control Conference, pages 1190–1194, Chicago, USA,
2000.

[31] A. Bemporad, F. Borrelli, and M. Morari. On the optimal control law for linear discrete
time hybrid systems. InInternational Workshop on Hybrid Systems: Computation and
Control, pages 105–119, Stanford, California, USA, 2002.

[32] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and
constraints.Automatica, 35(3):407–427, 1999.

[33] M. D. Di Benedetto and A. L. Sangiovanni-Vincentelli, editors.Hybrid Systems: Com-
putation and Control, 4th International Workshop, HSCC 2001, Rome, Italy, March
28-30, 2001, volume 2034 ofLecture Notes in Computer Science. Springer, 2001.

[34] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL—a tool suite
for automatic verification of real-time systems. InHybrid Systems III, volume 1066 of
Lecture Notes in Computer Science, pages 208–219. Springer-Verlag, 1996.

[35] A. Benveniste. Compositional and uniform modelling ofhybrid systems.IEEE Trans-
actions on Automatic Control, 43(4):579–584, apr 1998.

[36] A. Benveniste and P. Le Guernic. Hybrid dynamical systems theory and the signal
language.IEEE Transactions on Automatic Control, 5:535–546, may 1990.

[37] V. Bertin, E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and S. Yovine.
Taxis = Esterel + Kronos: a tool for verifying real-time properties of embedded systems.
In Proc. of the 40th IEEE Conf. on Decision and Control. Springer-Verlag, 2001.

[38] D. Bobrow, G. Kiczales, and J. Rivieres.The art of the metaobject protocol. MIT Press,
1991.

[39] G. Bobrow, L. Demichiel, R. Gabriel, S. Keene, G. Kiczales, and D. Moon. Common
Lisp object specification.Lisp and Symbolic Computation, 1, January 1989.

[40] G. Booch, I. Jacobson, and J. Rumbaugh.Unified modeling language user guide. Ad-
dison Wesley, 1997.

[41] O. Botchkarev and S. Tripakis. Verification of hybrid systems with linear differential
inclusions using ellipsoidal approximations. InHSCC, pages 73–88, 2000.

[42] O. Bournez, O. Maler, and A. Pnueli. Orthogonal polyhedra: representation and compu-
tation. In F. W. Vaandrager and J. H. van Schuppen, editors,HSCC ’99: Proceedings of

170 References

the Second International Workshop on Hybrid Systems, volume 1569 ofLecture Notes
in Computer Science, pages 46–60, London, UK, 1999. Springer-Verlag.

[43] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, andS. Yovine. Kronos: A
model-checking tool for real-time systems. In A. J. Hu and M.Y. Vardi, editors,Proc.
of the 10th Intl. Conf. on Computer-Aided Verification, volume 1427, pages 546–550.
Springer-Verlag, 1998.

[44] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Symbolic model checking:
10

20 states and beyond.Information and Computation, 98(2):142–170, 1992.
[45] L. P. Carloni, M. Di Benedetto, R. Passerone, A. Pinto, and A. Sangiovanni-

Vincentelli. Modeling techniques, programming languagesand design toolsets for
hybrid systems. Technical report, IST - Columbus Project, 2004. available at
www.columbus.gr/documents/public/WPHS/Columbus DHS40.2.pdf .

[46] A. Casagrande, A. Balluchi, L. Benvenuti, A. Policriti, T. Villa, and A. L. Sangiovanni-
Vincentelli. Improving reachability analysis of hybrid automata for engine control. In
Proc. of CDC 2004, 44th IEEE Conference on Decision and Control, pages 2322–2327,
Atlantis, Paradise Island, Bahamas, December 2004.

[47] P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis. Translating discrete-time
simulink to lustre. In R. Alur and I. Lee, editors,Proc. of the Third Intl. Conf. on
Embedded Software (EMSOFT). Philadelphia, PA, volume 2855 ofLecture Notes in
Computer Science, pages 84–99, Berlin, oct 2003. Springer Verlag.

[48] P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis. translating discrete-time
Simulink to Lustre. In R. Alur and I. Lee, editors,Proc. of the Third Intl. Conf. on
Embedded Software (EMSOFT). Philadelphia, PA, volume 2855 ofLecture Notes in
Computer Science, pages 84–99, Berlin, oct 2003. Springer Verlag.

[49] A. Chutinan. Hybrid system verification using discrete model approximations. PhD
thesis, Carnegie Mellon University, 1999.

[50] A. Chutinan and B.H. Krogh. Computing polyhedral approximations to flow pipes for
dynamic systems. In37th IEEE Conf. on Decision and Control: Session on Synthesis
and Verification of Hybrid Control Laws (TM-01), 1998.

[51] E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using
branching-time temporal logic. InWorkshop on Logic of Programs, volume 131 of
Lecture Notes in Computer Science. Springer-Verlag, 1981.

[52] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. MIT Press, 2000.
[53] E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and S. Yovine. Taxys: a tool

for the development and verification real-time embedded systems. InProc. of the 13th
Intl. Conf. on Computer-Aided Verification, volume 2102 ofLecture Notes in Computer
Science. Springer-Verlag, 2001.

[54] P. Collins. Continuity and computability of reachablesets. Theoretical Computer
Science, 341:162–195, 2005.

[55] J. B. Dabney and T. L. Harman.Mastering Simulink. Prentice Hall, 2003.
[56] T. Dang.Verification and synthesis of hybrid systems. PhD thesis, INPG, 2000.
[57] T. Dang and O. Maler. Reachability analysis via face lifting. In T. A. Henzinger and

S. Sastry, editors,HSCC 98: Hybrid Systems—Computation and Control, volume 1386
of Lecture Notes in Computer Science, pages 96–109. Springer-Verlag, 1998.

[58] A. David, G. Behrmann, K. G. Larsen, and W. Yi. A tool architecture for the next
generation of UPPAAL. In B. K. Aichernig and T. Maibaum, editors, Proceedings

References 171

of UNU/IIST 10th Anniversary Colloquium: Formal Methods atthe Crossroads: from
Panacea to Foundational Support, volume 2757 ofLecture Notes in Computer Science,
pages 208–219. Springer-Verlag, 2002.

[59] J. Davis, M. Goel, C. Hylands, B. Kienhuis, E.A. Lee, J. Liu, X. Liu, L. Muliadi,
S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay, and Y. Xiong. Overview of the Ptolemy
project. Technical Report UCB/ERL M99/37, Univ. of California at Berkeley, 1999.

[60] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The toolKronos. InHybrid Systems
III , volume 1066 ofLecture Notes in Computer Science, pages 208–219. Springer-
Verlag, 1996.

[61] A. Deshpande, D. Godbole, A. Gollu, L. Semenzato, R. Sengupta, D. Swaroop, and
P. Varaiya. Automated highway system tool interface format. Technical report, Cali-
fornia PATH Technical Report, January 1996.

[62] A. Deshpande, D. Godbole, A. Gollu, and P. Varaiya. Design and evaluation tools for
automated highway systems. InHybrid Systems III, volume 1066 ofLecture Notes in
Computer Science. Springer-Verlag, 1996.

[63] A. Deshpande, A. Gollu, and P. Varaiya. Shift: a formalism and a programming lan-
guage for dynamic networks of hybrid automata. InHybrid Systems IV, volume 1273
of Lecture Notes in Computer Science, pages 113–134. Springer-Verlag, 1997.

[64] A. Deshpande, A. Gollu, and P. Varaiya. The shift programming language for dynamic
networks of hybrid automata.IEEE Transactions on Automatic Control, 43(4):584–7,
April 1998.

[65] A. Deshpande and P. Varaiya. Viable control of hybrid systems. InHybrid Systems II,
volume 999 ofLecture Notes in Computer Science. Springer-Verlag, 1995.

[66] R. Djenidi, C. Lavarenne, R. Nikoukhah, Y. Sorel, and S.Steer. From hybrid simulation
to real-time implementation. InESS’99 11th European Simulation Symposium and
Exhibition, pages 74–78, oct 1999.

[67] S. Edwards, L. Lavagno, E. Lee, and A. Sangiovanni-Vincentelli. Design of embedded
systems: Formal models, validation and synthesis.Proc. of the IEEE, 85(3):366–390,
1997.

[68] J. Eker, J.W. Janneck, E.A. Lee, J. Liu, J. Ludwig, S. Neuendorffer, S. Sachs, and
Y. Xiong. Taming heterogeneity—the Ptolemy approach.Proceedings of the IEEE,
91(1):127–144, jan 2003.

[69] H. Elmqvist. Dymola - user’s manual. Technical report,DynaSim AB, Research Park
Ideon, Lund, Sweden, 1993.

[70] F. Eskafi, D. Khorramabadi, and P. Varaiya. Design and evaluation tools for automated
highway systems.Transpn. Res. - C, 3(1):1–17, 1995.

[71] G. Frehse. Phaver: Algorithmic verification of hybrid systems past hytech. InHSCC,
pages 258–273, 2005.

[72] P. Fritzson.Principles of object-oriented modeling and simulation with Modelica 2.1.
J. Wiley & Sons, 2004.

[73] P. Fritzson and V. Engelson. Modelica - a unified object-oriented language for system
modeling and simulation. InECCOP ’98: Proc. of the 12th Eur. Conf. on Object-
Oriented Programming, pages 67–90, London, UK, 1998. Springer-Verlag.

[74] A. Girard and G. J. Pappas. Approximate bisimulations for constrained linear systems.
In Proc. of the 44th IEEE Conf. on Decision and Control, December 2005.

172 References

[75] A. Girard and G. J. Pappas. Approximate bisimulations for nonlinear dynamical sys-
tems. InProc. of the 44th IEEE Conf. on Decision and Control, December 2005.

[76] D. Godbole, J. Lygeros, E. Singh, A. Deshpande, and E. Lindsey. Design and ver-
ification of communication protocols for degraded modes of operation of AHS. In
Conference on Decision and Control. IEEE, 1995.

[77] A. Gollu. Object management systems. PhD thesis, UC Berkeley, 1995.
[78] A. Gollu and P. Varaiya. Smart AHS: a simulation framework for automated vehicles

and highway systems.Mathematical and Computer Modeling, 27(9-11):103–28, May-
June 1998.

[79] C. Gomez.Engineering and scientific computing with Scilab. Birkhauser Verlag, 1999.
[80] T. Grandpierre, C. Lavarenne, and Y. Sorel. Optimized rapid prototyping for real-time

embedded heterogeneous multiprocessors. InProc. of CODES’99, pages 74–78, 1999.
[81] T. Grandpierre and Y. Sorel. From algorithm and architecture specifications to auto-

matic generation of distributed real-time executives: a seamless flow of graphs transfor-
mations. InMEMOCODE2003, Formal Methods and Models for Codesign Conference,
page 123, jun 2003.

[82] R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors. Hybrid Systems,
volume 736 ofLecture Notes in Computer Science. Springer, 1993.

[83] MoBIES Group. HSIF syntax (version 3). Internal document, Vanderbilt University,
October 22, 2002.

[84] J. Haddon, D. Godbole, A. Deshpande, and J. Lygeros. Verification of hybrid sys-
tems: monotonicity in the AHS control system. InProceedings of the DIMACS/SYCON
workshop on Hybrid systems III : verification and control, pages 161–172, Secaucus,
NJ, USA, 1996. Springer-Verlag New York, Inc.

[85] N. Halbwachs. Synchronous programming of reactive systems. Kluwer Academic
Publishers, 1993.

[86] N. Halbwachs, P. Raymond, and Y.-E. Proy. Verification of linear hybrid systems by
means of convex approximation. In B. LeCharlier, editor,SAS 94: Static Analysis Sym-
posium, volume 864 ofLecture Notes in Computer Science, pages 233–237. Springer-
Verlag, 1994.

[87] D. Harel. Statecharts: a visual formalism for complex systems.Science of Computer
Programming, 8:231:274, 1987.

[88] W.P.M.H. Heemels, B. De Schutter, and A. Bemporad. Equivalence of hybrid dynami-
cal models.Automatica, 37(7):1085–1091, July 2001.

[89] T. Henzinger and P. H. Ho. A note on abstract-interpretation strategies for hybrid
automata. In P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry,editors,Hybrid Systems
II , volume 999 ofLecture Notes in Computer Science, pages 252–264. Springer-Verlag,
1995.

[90] T. Henzinger and P. H. Ho. HYTECH: The Cornell hybrid technology tool. In
P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors,Hybrid Systems II, volume
999 ofLecture Notes in Computer Science, pages 265–293. Springer-Verlag, 1995.

[91] T. Henzinger, P. H. Ho, and H. Wong-Toi. A user guide to HYTECH. In E. Brinksma,
W. Cleaveland, K. Larsen, T. Margaria, and B. Steffen, editors, TACAS 95: Tools and
Algorithms for the Construction and Analysis of Systems, volume 1019 ofLecture Notes
in Computer Science, pages 41–71. Springer-Verlag, 1995.

References 173

[92] T. Henzinger, P. H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear hybrid
systems.IEEE Transactions on Automatic Control, 43(4):540–554, 1998.

[93] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for
real-time systems.Information and Computation, 111(2):193–244, 1994.

[94] T. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the HYTECH experi-
ence. InProc. of the 40th IEEE Conf. on Decision and Control, pages 2886 – 2892,
2001.

[95] T. A. Henzinger. The theory of hybrid automata. InLogic in Computer Science, pages
278–292. IEEE Computer Society Press, 1996.

[96] T. A. Henzinger. MASACCIO: A formal model for embedded components. In J. van
Leeuwen, O. Watanabe, M. Hagiya, P.D. Mosses, and T. Ito, editors, TCS 00: Theo-
retical Computer Science, volume 1872 ofLecture Notes in Computer Science, pages
549–563. Springer-Verlag, 2000.

[97] T. A. Henzinger and P.-H. Ho. Model checking strategiesfor linear hybrid systems. In
Proc. Workshop on Hybrid Systems and Autonomous Control, Ithaca, NY, 1994.

[98] T. A. Henzinger, P. H. Ho, and H. Wong-Toi. HYTECH: A model checker for hybrid
systems.International Journal on Software Tools for Technology Transfer, 1(1–2):110–
122, 1997.

[99] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid
automata? InProc. 27th Annual ACM Symp. on Theory of Computing (STOC), pages
373–382, 1995.

[100] T. A. Henzinger, M. Minea, and V. Prabhu. Assume-guarantee reasoning for hierar-
chical hybrid systems. In M. di Benedetto and A. Sangiovanni-Vincentelli, editors,
HSCC 01: Hybrid Systems—Computation and Control, volume 2034 ofLecture Notes
in Computer Science, pages 275–290. Springer-Verlag, 2001.

[101] T. A. Henzinger and S. Sastry, editors.Hybrid Systems: Computation and Control,
First International Workshop, HSCC’98, Berkeley, California, USA, April 13-15, 1998,
volume 1386 ofLecture Notes in Computer Science. Springer, 1998.

[102] C.A.R. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.
[103] G. J. Holzmann. The model checker SPIN.Software Engineering, 23(5):279–295,

1997.
[104] G. P. Hong and T. G. Kim. The DEVS formalism: a frameworkfor logical analysis

and performance. InFifth Annual Conference on AI, Simulation and Planning in High
Autonomy Systems, pages 170–278, Gainesville, Florida, 1994.

[105] A. Hsu, F. Eskafi, S. Sachs, and P. Varaiya. Protocol design for and automated highway
system. InDiscrete Event Dynamic Systems: Theory and Applications 2, volume 2,
pages 183–206, 1993.

[106] C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, and H. Zheng. Hyvisual: A
hybrid system visual modeler. Technical Report UCB/ERL M03/1, UC Berkeley, 2003.
available athttp://ptolemy.eecs.berkeley.edu/hyvisual/ .

[107] K. Inan and P. Varaiya. Finitely recursive process models for discrete-event systems.
IEEE Transactions on Automatic Control, 33(7):626–639, 1988.

[108] Specification and description language SDL, 1988.
[109] Estelle - A formal description technique based on extended state transition model.
[110] J. Jang, R. Teo, and C. Tomlin. Embedded software design for the Stanford DragonFly

UAV. Technical report, Stanford Univ., Dept. of Aeronautics and Astronautics, 2002.

174 References

[111] J.S. Jang and C. Tomlin. Design and implementation of alow cost, hierarchical and
modular avionics architecture for the DragonFly UAVs. InProceedings of the AIAA
Guidance, Navigation, and Control Conference, Monterey, August 2002.

[112] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli. System
level design: orthogonalization of concerns and platform-based design.IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 19(12):1523–
1543, 2000.

[113] A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability analysis. In
B. Krogh and N. Lynch, editors,HSCC 00: Hybrid Systems—Computation and Control,
volume 1790 ofLecture Notes in Computer Science, pages 202–214. Springer-Verlag,
2000.

[114] A.B. Kurzhanski and P. Valyi. Ellipsoidal calculus for estimation and control.
Birkhaeuser, Boston, 1997.

[115] A.B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability analysis: Inter-
nal approximation.Systems and Control Letters, 41:201–211, 2000.

[116] A.B. Kurzhanski and P. Varaiya. On ellipsoidal techniques for reachability analysis.
Optimization Methods and Software, 17:177–237, 2000.

[117] A.B. Kurzhanski and P. Varaiya. On ellipsoidal techniques for reachability analysis -
Part I: external approximations.Optimization Methods and Software, 17(2):177–206,
2002.

[118] A.B. Kurzhanski and P. Varaiya. On ellipsoidal techniques for reachability analysis -
Part II: internal approximations based-valued constraints. Optimization Methods and
Software, 17(2):207–337, 2002.

[119] A.B. Kurzhanski and P. Varaiya. Reachability analysis for uncertain systems - the ellip-
soidal technique.Dynamics of Continuous, Discrete and Impulsive Systems, 9(3):347–
367, 2002.

[120] A.B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for hybrid dynamics: the reach-
ability problem. In A. Lindquist, W. Dayawensa, and Y. Zhou,editors,New Directions
and Applications in Control Theory, volume 321 ofLNCIS (Lecture Notes in Control
and Information Sciences), pages 193–206. Springer-Verlag, 2005.

[121] A.B. Kurzhanski and P. Varaiya. On verification of controlled hybrid dynamics through
ellipsoidal techniques. InProceedings of the 44th IEEE Conference on Decision and
Control, and the European Control Conference 2005, Seville, Spain, pages 4682–4686,
December 2005.

[122] A.A. Kurzhanskiy and P. Varaiya. Ellipsoidal techniques for reachability analysis of
discrete-time linear systems.IEEE Transactions on Automatic Control, June 2005.
Submitted for Publication.

[123] A.A. Kurzhanskiy and P. Varaiya.Ellipsoidal Toolbox - Technical Report. University
of California, Berkeley, http://www.eecs.berkeley.edu/˜ akurzhan/ellipsoids, 2006.

[124] M. Kvasnica, P. Grieder, M. Baotic, and M. Morari. Multi-parametric toolbox (MPT).
In HSCC, pages 448–462, 2004.

[125] G. Lafferriere, G.J. Pappas, and S. Yovine. A new classof decidable hybrid systems.
In F. W. Vaandrager and J. H. van Schuppen, editors,HSCC ’99: Proceedings of the
Second International Workshop on Hybrid Systems, volume 1569 ofLecture Notes in
Computer Science, pages 137–151, London, UK, 1999. Springer-Verlag.

References 175

[126] L. Lamport. Proving the correctness of multiprocess programs.IEEE Transactions on
Software Engineering, 2:125–143, 1977.

[127] L. Lavagno, J. Moondanos, T. Meyerowitz, and Y. Watanabe. Modeling of architectural
resources in Metropolis. Internal document, Cadence, 2002.

[128] E. A. Lee and S. Neuendorffer. Concurrent models of computation for embedded soft-
ware. IEE Proceedings, 153(2):239–250, March 2005.

[129] E. A. Lee and H. Zheng. Operational semantics of hybridsystems. InHSCC, pages
25–53, 2005.

[130] E.A. Lee and A.L. Sangiovanni-Vincentelli. A framework for comparing models of
computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 17(12):1217–1229, dec 1998.

[131] E.A. Lee and Y. Xiong. System-level types for component-based design. In T. A.
Henzinger and C. M. Kirsch, editors,Embedded Software. Proceeding of the First In-
ternational Workshop, EMSOFT 2001. Tahoe City, CA, volume 2211 ofLecture Notes
in Computer Science, Berlin, oct 2001. Springer Verlag.

[132] J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability specifications for
hybrid systems. InAutomatica, Special Issue on Hybrid Systems, volume 35, 1999.

[133] N. Lynch, R. Segala, F. Vaandrager, and H. Weinberg. Hybrid I/O automata. InHy-
brid Systems III: Verification and Control, volume 1066 ofLecture Notes in Computer
Science, pages 496–510. Springer-Verlag, 1996.

[134] N. A. Lynch and B. H. Krogh, editors.Hybrid Systems: Computation and Control,
Third International Workshop, HSCC 2000, Pittsburgh, PA, USA, March 23-25, 2000,
volume 1790 ofLecture Notes in Computer Science. Springer, 2000.

[135] O. Maler, editor.Hybrid and Real-Time Systems, International Workshop. HART’97,
Grenoble, France, March 26-28, 1997, Proceedings, volume 1201 ofLecture Notes in
Computer Science. Springer, 1997.

[136] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. InReal-Time:
Theory in Practice, REX Workshop, volume 600 ofLecture Notes in Computer Science,
pages 447–484. Springer-Verlag, 1991.

[137] O. Maler and A. Pnueli, editors.Hybrid Systems: Computation and Control, 6th In-
ternational Workshop, HSCC 2003 Prague, Czech Republic, April 3-5, 2003, volume
2623 ofLecture Notes in Computer Science. Springer, 2003.

[138] Matisse. Available athttp://wiki.grasp.upenn.edu/ ∼graspdoc/hst/ .
[139] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
[140] R. Milner. A calculus of communicating systems. Number 92 in Lecture Notes in

Computer Science. Springer-Verlag, 1980.
[141] M. Morari and L. Thiele, editors.Hybrid Systems: Computation and Control, 8th Inter-

national Workshop, HSCC 2005, Zurich, Switzerland, March 9-11, 2005, volume 3414
of Lecture Notes in Computer Science. Springer, 2005.

[142] P. Mosterman. On the normal component of centralized frictionless collision se-
quences.ASME Journal of Applied Mechanics, 2005.

[143] S. Neema. Analysis of matlab simulink and stateflow data model. Technical Report
ISIS 01-204, Vanderbilt University, Nashville, TN, mar 2001.

[144] R. Nikoukhah and S. Steer. SCICOS - a dynamic system builder and simulator user’s
guide - version 1.0. Technical Report 0207, INRIA, Rocquencourt, France, jun 1997.

176 References

[145] The University of Pennsylvania MoBIES Group. HSIF semantics (version 3, synchro-
nous edition). Internal document, The University of Pennsylvania, August 22, 2002.

[146] A. Pinto, L.P. Carloni, R. Passerone, and A.L. Sangiovanni-Vincentelli. Interchange
formats for hybrid systems: Abstract semantics. In J. P. Hespanha and A. Tiwari, ed-
itors,Proceedings of the The 9th International Workshop on HybridSystems: Compu-
tation and Control (HSCC 2006), volume 3927 ofLecture Notes in Computer Science,
pages 491–506, Santa Barbara, California, March 2006. Springer-Verlag.

[147] A. Pinto, A.L. Sangiovanni-Vincentelli, L.P. Carloni, and R. Passerone. Interchange
formats for hybrid systems: Review and proposal. In M. Morari, L. Thiele, and F. Rossi,
editors,Proceedings of the The 8th International Workshop on HybridSystems : Com-
putation and Control (HSCC 2005), volume 3414 ofLecture Notes in Computer Sci-
ence, pages 526–541, Zurich, Switzerland, March 2005. SpringerVerlag.

[148] A. Puri and P. Varaiya. Driving safely in smart cars. InAmerican Control Conference,
pages 3597–3599, 1995.

[149] S. Ratschan and Z. She. Safety verification of hybrid systems by constraint propagation
based abstracition refinement. InHSCC, pages 573–589, 2005.

[150] M. Rivoire and J.L. Ferrier. MATLAB Simulink Stateflow avec des exercices
d’automaticue rsolus (MATLAB Simulink Stateflow with solved exercises in automatic
control). Editions TECHNIP, 2001.

[151] A. L. Sangiovanni-Vincentelli. Defining platform-based design. InEEDesign. Avail-
able at www.eedesign.com/story/OEG20020204S0062), feb 2002.

[152] L. Semenzato, A. Deshpande, and A. Gollu. Shift reference manual. Technical report,
California PATH, June 1996.

[153] B. I. Silva, K. Richeson, B. Krogh, and A. Chutinan. Modeling and verifying hybrid
dynamic systems using CheckMate. InProceedings of 4th International Conference
on Automation of Mixed Processes, pages 323–328, sep 2000.

[154] B. I. Silva, O. Stursberg, B. H. Krogh, and S. Engell. Anassessment of the current
status of algorithmic approaches to the verification of hybrid systems. InProc. of the
40th IEEE Conf. on Decision and Control, pages 2867 – 2874, 2001.

[155] T. Simsek. SHIFT tutorial: A first course for SHIFT programmers. Technical report,
UC Berkeley, 1999.

[156] T. Simsek. Theλ-SHIFT specification language for dynamic networks of hybrid au-
tomata. Technical report, UC Berkeley, 2000.

[157] E. D. Sontag. Nonlinear regulation: the piecewise linear approach.IEEE Transactions
on Automatic Control, 26:346–357, 1981.

[158] Y. Sorel. Massively parallel computing systems with real time constraints - the “algo-
rithm architecture adequation” methodology. InMassively Parallel Computing Systems
Conference, pages 44–54, 1994.

[159] G. Steele.Common Lisp: the language. Digital Press, second edition edition, 1990.
[160] D. Stipanovic, G. Inalhan, and C. Tomlin. Decentralized overlapping control of a for-

mation of unmanned aerial vehicles. InProceedings of the 41st IEEE Conference on
Decision and Control, Las Vegas, NV, December 2002.

[161] O. Stursberg, S. Kowalewski, J. Preussig, and H. Treseler. Block-diagram based mod-
elling and analysis of hybrid processes under discrete control. Journal Europeen des
Systemes Automatises (JESA), 32(9-10):1097–1118, 1998.

References 177

[162] The Metropolis Project Team. The Metropolis meta model version 0.4. Technical
Report UCB/ERL M04/38, University of California, Berkeley, September 2004.

[163] M. M. Tiller. Introduction to physical modeling with Modelica. Kluwer Academic
Publishers, 2001.

[164] C. Tomlin and M. R. Greenstreet, editors.Hybrid Systems: Computation and Con-
trol, 5th International Workshop, HSCC 2002, Stanford, CA,USA, March 25-27, 2002,
volume 2289 ofLecture Notes in Computer Science. Springer, 2002.

[165] F. D. Torrisi and A. Bemporad. Discrete-time hybrid modeling and verification. In
Proc. of the 40th IEEE Conf. on Decision and Control, pages 2899 – 2904, 2001.

[166] F. D. Torrisi and A. Bemporad. HYSDEL - a tool for generating computational hybrid
models for analysis and synthesis problems.IEEE Transactions on Control Systems
Technology, 12(2):235–249, mar 2004.

[167] F. D. Torrisi, A. Bemporad, G. Bertini, P. Hertach, D. Jost, and D. Mignone. Hysdel
2.0.5 - user manual. Technical report, ETH Zurich, 2002.

[168] A.C. Uselton and S.A. Smolka. A compositional semantics for Statecharts using la-
beled transition systems. InConcurrency Theory, volume 836 ofLecture Notes in
Computer Science, pages 2–17. Springer-Verlag, 1994.

[169] F. W. Vaandrager and J. H. van Schuppen, editors.Hybrid Systems: Computation
and Control, Second International Workshop, HSCC’99, Bergen Dal, The Netherlands,
1999, volume 1569 ofLecture Notes in Computer Science. Springer, 1999.

[170] P. Varaiya. Smart cars on smart roads: problems of control. IEEE Transactions on
Automatic Control, 38(2), 1993.

[171] P. Varaiya. Reach set computation using optimal control. In KIT Workshop on Verifi-
cation of Hybrid Systems, Grenoble, France, oct 1998.

[172] S.M. Veres. User’s Manual - Reference of the Geometric Bounding Toolbox- Ver-
sion 7.3. SysBrain Ltd, Southampton, United Kingdom, url = http://sysbrain.com/gbt/,
March 2004.

[173] K. Weihrauch.Computable analysis - An introduction. Texts in Theoretical Computer
Science. Springer-Verlag, Berlin, 2000.

[174] S. Wolfram.TheMATHEMATICA book, Fifth Edition. Wolfram Media, 2003.
[175] XML. seehttp://www.w3.org/XML/ .
[176] B. Zeigler. Multifaceted modeling and discrete event simulation. Academic Press,

London, 1984.

